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Abstract. Fall detection is typically based on temporal and spectral analysis of 
multi-dimensional signals acquired from wearable sensors such as tri-axial 
accelerometers and gyroscopes which are attached at several parts of the human 
body. Our aim is to investigate the location where such wearable sensors should 
be placed in order to optimize the discrimination of falls from other Activities 
of Daily Living (ADLs). As a result, we perform feature extraction and 
classification based on data acquired from a single sensor unit placed on a 
specific body part each time. The investigated sensor locations include head, 
chest, waist, wrist, thigh and ankle. The evaluation of several classification 
algorithms revealed the waist and thigh as the optimal locations. 
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1   Introduction  

Falls are a common cause of injury among elderly people. According to the World 
Health Organization, 28–35% of people aged 65 and over fall at least once a year with 
serious consequences such as heavy injuries and even death. Additionally, the 
moments after a fall are very crucial. Many people experience what is called the “long 
lie,” a long period of immobility after a fall that can have serious complications in a 
person’s health. Unless precautions are taken, the number of injuries and the costs 



associated with fall-related trauma will double in the near future [1]. Fall detection is 
therefore considered as an extremely important aspect of healthcare.       

The most challenging aspect of fall detection is the distinction between falls and 
Activities of Daily Living (ADLs) such as sitting, standing or walking since falls 
typically occur while performing daily activities. In particular, ADLs with high 
acceleration are often confused with falls. Misinterpreting a fall as an ADL can have 
serious effects on the subject’s health [2]. Therefore, a fall detection system should be 
able to accurately distinguish falls from ADLs immediately when they occur. This 
requires falls to be automatically detected in real time. Another challenge is to make 
the system as simple as possible, with low false-alarm rates. Subjects using the system 
should feel comfortable and their quality of everyday life should not be affected.  
Accurate, reliable and real-time fall detection systems are therefore essential.   

Significant research has been conducted in this field and various fall detection 
systems have been proposed in the past years. Noury et al. [3] and Yu et al. [4] have 
investigated the principles of fall detection and reviewed early works on the subject. 
Fall detection approaches can be divided into two main categories: vision-based and 
wearable device (motion sensor)-based systems. 

 Several context aware systems that use devices such as cameras or infrared 
sensors to detect falls within an environment have been developed. Rougier et al. [5] 
used human shape deformation to track the person’s silhouette in recordings taken 
from four cameras. Falls and ADLs were classified with 98% accuracy. In [6], a 
human 3D bounding box was created and the Kinect infrared sensor was used to 
accurately detect falls without any prior knowledge of the environment. Olivieri et al. 
[7] used motion templates taken from a camera to recognize certain ADLs and detect 
falls, achieving 99% recognition rate. However, these approaches have certain 
limitations; the system can only monitor activities within the environment and thus, 
outdoor activities are excluded, restricting the mobility of the user. Also, other people 
moving within the same environment might also “confuse” the system and trigger 
false alarms in some cases. 

The use of wearable motion sensors has been preferred by many researchers. With 
the advances in micro electro-mechanical systems (MEMS) technology, sensors such 
as accelerometers, gyroscopes and magnetometers have been integrated within small 
motion sensor units. Small devices that contain the above sensors can be used to 
collect movement data and detect falls. They are compact, light, inexpensive and have 
low power consumption. They can be placed in the subject’s pockets or be easily 
attached at different body parts without making the subject uncomfortable; thus, they 
make the analysis of outdoor activities possible. Different body parts have been 
proposed for the sensor placement that improve the accuracy with minimum intrusion 
to the subject’s everyday life. Yang and Hsu [8] have examined the fundamentals of 
such sensors as well as the optimal position on the human body for sensor placement.  

In fall detection studies, typically simple thresholding is used. A fall is detected 
when the acceleration suddenly increases due to the change in orientation from 
upright to lying position [9]. In [10], the results of certain threshold-based methods 
that consider fall impact, velocity and posture have been assessed and tested on 
elderly subjects, achieving 94.6% sensitivity. Thresholding methods sometimes tend 
to miss “soft falls” meaning falls that might not exceed the threshold. Also, certain 
ADLs with high acceleration might exceed the threshold and get misclassified as falls. 



The main classification problem is to distinguish falls from ADLs. Machine 
learning techniques have been used to achieve more reliable results. Every recorded 
movement in the fall and activity database [11] has its own pattern. By extracting 
features from the raw data, these patterns can be classified by different classification 
methods. Before raw data are given to different classification algorithms, they must 
be pre-processed using a windowing technique. Such a technique divides the sensor 
signal into smaller time segments (i.e., windows) and a classification algorithm is 
applied separately on each window, producing a classification result. After pre-
processing, features from the time or spatial domain are extracted to feed trained 
classifiers such as artificial neural (ANN) or Bayesian networks (BN), support vector 
machines (SVMs), decision trees, k-nearest neighbors (k-NN), etc. Kaldegari et al. 
[12] used statistical features such as maximum, minimum, mean, range, variance and 
standard deviation extracted from a waist-worn tri-axial accelerometer to investigate 
the performance of various classifiers on fall detection. The multilayer perceptron 
yielded the best sensitivity (90.15%). Özdemir and Barshan [11] added 
autocorrelation coefficients and discrete Fourier transform (DFT) coefficients 
extracted from data acquired by sensors placed at different body parts. Six classifiers 
(k-NN, SVM, ANN, least-squares method, Bayesian decision making, dynamic time 
warping) were used to assign a fall or ADL class label to the feature vectors 
concatenated from all sensors. All methods achieved higher than 97.47% and 93.44% 
sensitivity and specificity, respectively. Yuwono et al. [13] obtained data from a 
single waist-worn tri-axial accelerometer and extracted features using the Particle 
Swarm Optimization (PSO) clustering method. Then, they proceeded to classify the 
data achieving above 98.6% sensitivity in detecting falls. 

Earlier studies report conflicting results on the best location on the human body to 
carry a single fall detection device. Some studies report that the waist is the best 
place, since it is close to the body’s center of gravity [10,14], while some claim that 
the chest or the head is better [9, 15-17]. Several studies consistently agree that the 
arms and the legs are not suitable parts of the body to carry a fall detection device 
since they are associated with higher accelerations [16, 18]. Therefore, resolving this 
issue through experiments that follow standardized procedures will be a valuable 
contribution. Özdemir and Barshan [11] acquired data from sensors placed on six 
body parts including head, chest, waist, wrist, thigh and ankle. In order to proceed 
with classification, the features extracted from each location are concatenated to a 
single feature vector leading to a high-dimensional feature space. However, fall 
detection often needs to be performed in real-time which requires lighter processing 
that can be achieved either through dimensionality reduction or selection of a single 
sensor unit located at the optimal position.  

In this work, we attempt to determine the optimal location for the sensor placement 
on the human body. To achieve this, we evaluate the activity and fall dataset created 
by Özdemir and Barshan [11] with respect to several classification algorithms using 
only the data acquired from a single sensor location each time. The classification 
performance in terms of accuracy is used as the criterion to reveal the optimal sensor 
location. Since data from a single sensor unit are used, there is no need for 
dimensionality reduction, making the proposed methodology computationally 
efficient and thus, more capable of real-time fall detection. 



The rest of the paper is organized as follows. In Section 2, we provide details on 
the dataset and the classification methodology. In Section 3, we present and discuss 
the achieved results. Finally, Section 4 concludes this work. 

2   Materials and Methods 

2.1   Dataset 

With Erciyes University Ethics Committee approval, seven males (24 ±3 years old, 
67.5 ±13.5 kg, 172 ± 12 cm) and seven females (21.5 ± 2.5 years old, 58.5 ± 11.5 kg, 
169.5 ± 12.5 cm) healthy volunteers participated in the study with informed written 
consent. Six wireless sensor units were tightly fitted with special strap sets to the 
subjects’ heads, chests, waists, right-wrists, right-thighs, and right-ankles.  Each unit 
comprises three tri-axial devices (accelerometer, gyroscope, and 
magnetometer/compass) with respective ranges of ±120 m/s2, ±1200o/s, and ±1.5 
Gauss, and an atmospheric pressure meter with 300–1100 hPa operating range, which 
we did not use. Raw motion data were recorded with a sampling frequency of 25 Hz. 
Acceleration, rate of turn, and the strength of the Earth’s magnetic field along three 
perpendicular axes (x, y, z) were recorded for each unit [13]. A set of trials consists of 
20 fall actions (front-lying, front-protection-lying, front-knees, front-knees-lying, 
front-right, front-left, front-quick-recovery, front-slow-recovery, back-sitting, back-
lying, back-right, back-left, right-sideway, right-recovery, left-sideway, left-recovery, 
syncope, syncope-wall, podium, rolling-out-bed) and 16 ADLs (lying-bed, rising-bed, 
sit-bed, sit-chair, sit-sofa, sit-air, walking-forward, jogging, walking-backward, 
bending, bending-pick-up, stumble, limp, squatting-down, trip-over, coughing-
sneezing). These are adopted from [19] and lasted about 15 s on the average. The 14 
volunteers repeated each test for five times. Thus, a considerably diverse dataset 
comprising 1400 falls (20 tasks × 14 volunteers × 5 trials) and 1120 ADLs (16 tasks × 
14 volunteers × 5 trials) was acquired, resulting in 2520 trials. Many of the non-fall 
actions included in the dataset are high-impact events that may be easily confused 
with falls. 

2.2   Feature Extraction 

Before we train the classifiers, we need to identify and isolate the actual experimental 
events since raw data acquired from the sensors include several time points that 
correspond to immobility before and after the detected fall event. In order to identify 
the fall event, we detect the peak of the total acceleration vector is. Total acceleration 
is defined as:  

 

 
(1) 



 

where Ax, Ay and Az are the accelerations along the x, y and z axis respectively.  
In contrast to [11], we measure the total acceleration on each sensor separately. For 

each sensor, we keep two seconds of the sequence before and after the peak 
acceleration, that is 50 values before and after the peak given the sampling frequency 
of 25 Hz. Therefore, for each test, we obtain six arrays of size 9x101, one for each of 
the six sensors. 

We parameterize each one of the nine measured events using the features proposed 
in [11]: minimum, maximum and mean values, skewness, kurtosis, the first 11 values 
of the autocorrelation sequence and the first five frequencies with maximum 
magnitude of the DFT along with the five corresponding amplitudes, resulting in a 
feature vector of dimensionality 234 (26 features for each one of the nine measured 
signals) for each test. 

2.3   Classification 

We evaluate the ability of the above features to discriminate between falls and 
ADLs using several classification algorithms implemented by the WEKA machine 
learning toolkit [20] including J48 decision tree, k-nearest neighbors algorithm (IBk) 
[21], Random Forest (RF) [22,23], Random Committee (RC) and SVM [24] with 
RBF Kernel (SMO). The classifiers in our study were selected in an attempt to 
evaluate representative algorithms for each one of the main categories of machine 
learning classifiers including decision trees (J48), support vector machines (SMO), 
ensemble classifiers (RF, RC) but also simple methods such as k-NN (IBk).  

3   Results 

We evaluated binary classification performance using accuracy, sensitivity and 
specificity. Evaluation was performed in a 10-fold cross validation setting. 

 
Table 1. Evaluation all classification models 
Classification 

Model 
Sensors Accuracy Sensitivity Specificity 

(a) J48 

Head     96.48     91.06     95.76 
Chest     97.53     97.70     97.31 
Waist     97.96     97.99     97.94 
Wrist     93.71     94.78     92.37 
Thigh     98.24     98.71     97.67 
Ankle     97.45     97.49     97.40 

(b) IBk 

Head 93,70 92,84 94,77 
Chest 97,45 97,28 97,67 
Waist 98,61 98,85 98,30 
Wrist 89,74 84,13 96,77 
Thigh 96,42 94,20 99,19 
Ankle 95,58 93,34 98,39 



(c) RC 

Head 97,17 98,57 95,41 
Chest 98,61 99,07 98,03 
Waist 98,89 99,28 98,39 
Wrist 94,63 96,35 92,47 
Thigh 98,77 99,00 98,48 
Ankle 98,77 98,85 98,66 

(d) RF 

Head 96,77 99,36 93,51 
Chest 98,61 99,28 97,76 
Waist 99,28 99,64 98,84 
Wrist 95,62 98,28 92,29 
Thigh 99,20 99,43 98,93 
Ankle 98,77 99,07 98,39 

(e) SMO 

Head 97,29 97,92 96,49 
Chest 98,89 99,28 98,39 
Waist 99,36 99,50 99,19 
Wrist 96,78 97,71 95,61 
Thigh 99,48 99,21 99,82 
Ankle 98,57 98,85 98,21 

 

 
Fig. 1. Bar graph showing the accuracy of all classification models for all sensors. 

 
Table 1 shows the achieved results in terms of accuracy, sensitivity and specificity 

for each sensor location for the J48, IBk, RC, RF and SMO algorithms, respectively. 
The position resulting in the best accuracy is highlighted in boldface font in the table. 
Figure 1 shows a comparative diagram across different body locations for each 
classification model..  

We achieve the overall highest accuracy (99.48%) for the thigh sensor location 
using the SMO classifier. For this case, the obtained sensitivity, i.e., the fraction of 
actual falls which are correctly identified as such is 99.21% and the specificity, that is, 
the proportion of ADLs, that were correctly classified as such is 99.82%. It seems that 
thigh-attached sensors can significantly reflect gait-related features during the 
performance of falls and ADLs making their discrimination more accurate. The waist 
sensor location follows by achieving the highest accuracy values for the RF (99.28%), 



RC (98.89%) and k-NN, IBk (98.61%) classifiers. Such results agree with our 
intuition for the superiority of waist location based on the fact that it is near the body's 
center of gravity. Finally, for the J48 classifier, the most accurate sensor location is 
the thigh, reaching 98.24% accuracy.  

To summarize, the waist and thigh sensors achieve the highest accuracies for all 
classifiers, followed by the chest and ankle sensors. The wrist sensor is the one with 
the lowest accuracy for all classifiers. It is noteworthy, however, that all sensors 
achieve accuracy higher than 90% and there are cases where the differences among 
the sensors are not significant, especially when comparing the most accurate sensor 
locations such as the thigh and the waist.  

4   Conclusion 

In this paper, we investigated optimal sensor placement location for accurate fall 
detection based on feature extraction and classification. Evaluation of several 
classification algorithms reveals the superiority of thigh and waist locations. 
However, the differences on sensitivity and accuracy among the different sensor 
locations are relatively low and sometimes negligible, especially for the best 
performing waist and thigh sensors. Finally, since our method proposes the utilization 
of a single sensor unit, it keeps the feature vector dimensionality rather low, providing 
the means for real-time fall detection, even when using mobile devices with limited 
computational capabilities. 
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