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Abstract. In the biomedical analytics pipeline data preprocessing is
the first and crucial step as subsequent results and visualization depend
heavily on original data quality. However, the latter often contain a large
number of outliers or missing values. Moreover, they may be corrupted
by noise of unknown characteristics. This is in many cases aggravated
by lack of sufficient information to construct a data cleaning mechanism.
Regularization techniques remove erroneous values and complete miss-
ing ones while requiring little or no information regarding either data
or noise dynamics. This paper examines the theory and practice of a
regularization class based on finite differences and implemented through
the conjugate gradient method. Moreover, it explores the connection of
finite differences to the discrete Laplace operator. The results obtained
from applying the proposed regularization techniques to heart rate time
series from the MIT-BIH dataset are discussed.

Keywords: Finite difference matrix, regularization, biosignal process-
ing, big data analytics, conjugate gradient, discrete Laplace operator,
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1 Introduction

As big data displace traditional storage and processing bounds, the need for
high quality data emerges as a pressing issue. Particularly in deep learning,
bioengineering, and big data analytics arises frequently the problem of replacing
a raw data vector b with a smoother or cleaner version s, but there is insufficient
information to do so. This typically happens when b has been corrupted by
noise of unknown distribution, possibly colored or non-stationary, excluding thus
signal estimation techniques based on stationarity and gaussianity assumptions.
Alternatively, b may contain a prohibitively large number of missing values or
outliers, for instance when the original data come from databases which are
either schemaless or have no integrity constraints placed on them.

A broad class of regularization techniques attempts to minimize the cost
function

J(s; γ0)
4
= ‖b− s‖22 + γ0‖Ms‖22 (1)



2

M is a constraint matrix which may well codify restrictions inherent to the data
generating process, but in the majority of cases it is formed by supplemental
constraints selected by a data scientist. Thus, M is open to interpretation. γ0 >
0 represents the relative importance of the first term of (1), which measures
how close s is to b, compared to the second one, which quantifies the degree b
conforms to the given constraints.

Once J is formed, s is selected to be

s∗ = argmins {J(s; γ0)} (2)

A special case of (1) is when M is ∆p, the p-th order finite difference matrix.
In this case J(s; γ0) becomes

Jp(s; γ0) = ‖b− s‖22 + γ0‖∆ps‖22 (3)

When ∆p is applied to s, it returns the p-th order discrete difference of s denoted
by sp = ∆ps. When p = 0, then s = s0 and ∆0 is the identity matrix. For the
cases when p = 1 and p = 2 the multiplication ∆ps yields respectively

s1 = ∆1s =


s[1]− s[0]
s[2]− s[1]

...
s[n− 1]− s[n− 2]

 (4)

s2 = ∆2s =


s[2]− 2s[1] + s[0]
s[3]− 2s[2] + s[1]

...
s[n− 1]− 2s[n− 2] + s[n− 3]

 (5)

The primary contribution of this paper is two families of algorithms for time
series regularization based on finite differences. They require only two parame-
ters and they can implemented efficiently as variations of the conjugate gradient
method, a widespread iterative algorithm for solving symmetric and positive def-
inite linear systems. Selected members of both families are applied to denoising
two electrocardiogram (ECG) time series from the MIT-BIH dataset.

The remaining of this work is structured as follows. Section 2 summarizes
current scientific literature regarding this topic. Section 3 outlines the proper-
ties of difference matrices and section 5 a special case approximation based on
discrete Laplace operators. Finally, section 6 presents the results of applying
the proposed regularization algorithms to cleaning brain data, whereas section
7 discusses future research directions. Table 1 summarizes the symbols used in
this paper. Vectors and sequences with n elements are indexed from 0 to n− 1.
Vectors are symbolized by small boldface letters, matrices by capital boldface let-
ters, and scalars by small Greek letters. Throughout this paper is assumed that
difference order p is considerably smaller than the vector length n. Acronyms
are defined the first time they are encountered in the text.
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Table 1. Symbols used in this paper.

Symbol Meaning
4
= Definition or equality by definition
x[k] k-th vector of an iterative algorithm
λ(A) Spectrum of matrix A
qA(λ) Characteristic polynomial of matrix A
〈xk〉 Sequence of elements xk
〈xk〉 ? 〈yk〉 Linear convolution of 〈xk〉 with 〈yk〉
F [x] Discrete Fourier transform of vector x
F−1 [x] Inverse discrete Fourier transform of x
Mn Discrete Laplace operator n× n
x1 � x2 Elementwise vector division of x1 to x2

< [x] Real part of vector x

2 Related Work

Regularization has been originally proposed for obtaining a solution from ill-
posed linear systems and inverese problems as explained in the overview [15].
Among the earliest and most known techniques is Tikhonov regularization [15][26]

L(s; A,B) = ‖b−As‖2M + ‖Bs‖2M

where ‖·‖M is a suitably selected norm, not necessarily the Euclidean, defined on
a metric space. A scheme for selecting parameters for Tikhonov regularization
is proposed in [22], while extensions can be found in [11] and [6]. Lasso [25]
is another methodology moving along similar lines using the Chebyshev norm.
Regularization properties under the Euclidean and the Chebyshev norm are
discussed in [21].

An established technique for solving continous inverse where a bounded func-
tion f(·) is satisfying the n constraints f(xk) = yk with x1 ≤ x2 ≤ . . . ≤ xn
relies on a similar cost function LS defined over a Sobolev space [10]

LS(f ; η0) =

n∑
k=1

|f(xk)− yk|2 + η0

∫ xn

x1

(
∂pf(x)

∂xp

)2

dx

In ordinary machine learning regularization has been proposed for pruning
synapses in neural networks once the training phase is complete [9]. Alterna-
tively, in supervised deep learning regularizing neural networks [13][17][2] is an
architecture designed to prevent overfitting during the training phase [24][5].
In unsupervised deep learning variants of the non-negative matrix factorization
(NMF) [18] have been proposed to avoid near singular factors. Regularization
algorithms such as [20] have been introduced for reproducible kernel Hilbert
spaces (RKHSs) [12].

Cardiovascular time series and electrocardiograms (ECG) have long been the
subject of biomedical research [14] and they are common biosignals along with
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respiration rate, blood samples, and sleep data. Machine learning methods have
been applied to ECG data in [27], while in [19] heart rate variability was the
primary feature in a broad range of predictors. For a signal processing in heart
time series see [3][1]. Finally, [4] explains how ECGs can be described in terms
of the Minimum Description Length (MDL) principle.

3 Difference Matrix

Definition 1. The p-th order difference of y ∈ Rn, denoted by yp ∈ Rn−p, is
elementwise recursively computed as

yp[k]
4
=

{
y[k], p = 0

yp−1[k + 1]− yp−1[k], p ≥ 1
(6)

Property 1. Definition 1 implies that p-th order difference is a linear combination
of p+1 consecutive elements of s. Let 〈τp[k]〉 denote the corresponding coefficient
sequence. Then

〈τp[k]〉 = (−1)
k

(
p

k

)
, 0 ≤ k ≤ p (7)

Proof. Let Tp(z) be the generating function of 〈τ [k]〉. Clearly, T0(z) = 1 and
T1(z) = 1− z. As the p-th order difference is computed by subtracting from the
(p− 1)-th order sequence a delayed by one copy of itself. Therefore

Tp(z) = Tp−1(z)− z Tp−1(z)

= (1− z)Tp−1(z) = (1− z)p (8)

implying that τp[k] is the modified binomial coefficient of (7).

Property 2. 〈τp[k]〉 has the following properties:

p∑
k=0

τp[k] =

p∑
k=0

(−1)
k

(
p

k

)
= 0

p∑
k=0

|τp[k]| =

p∑
k=0

(
p

k

)
= 2p

p∑
k=0

|τp[k]|2 =

p∑
k=0

(
p

k

)(
p

p− k

)
=

(
2p

p

)
〈τp1 [k]〉 ? 〈τp2 [k]〉 = 〈τp1+p2 [k]〉 (9)

The normalized Fourier transform of 〈τp[k]〉 is

(F [τp])[u]
4
=

1√
p+ 1

p∑
k=0

(−1)
k

(
p

k

)
e−iku

2π
p+1

=
2p sinp

(
uπ
p+1

)
√
p+ 1

eipπ( 1
2−

u
p+1 ) (10)
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Property 3. 〈τp[k]〉 is a linear phase FIR filter.

∆p can be directly constructed from 〈τp[k]〉 as follows
τp[p] τp[p− 1] . . . τp[0] 0 . . . 0

0 τp[p] . . . τp[1] τp[0] . . . 0
...

. . .
. . .

. . .
. . . . . .

...
0 . . . . . . . . . τp[p] . . . τp[0]


︸ ︷︷ ︸

4
= ∆p

(11)

Property 4. By construction ∆p ∈ R(n−p)×n. Moreover

– It is non-normal as ∆T
p ∆p 6= ∆p∆

T
p .

– It is a filter matrix.
– It is Toeplitz and upper triangular with a band of p.
– It has (n− p)(p+ 1) = O (n) non-zero elements.
– ‖∆p‖1 = ‖∆p‖∞ =

∑n
k=0 |τp[k]| = 2p

– ‖∆p‖F =
√

(n− p)
∑p
k=0 |τp[k]|2 =

√
(n− p)

(
2p
p

)
Property 5. By construction ∆T

p ∆p ∈ Rn×n. Moreover

– It is p-diagonal. Also is symmetric and, hence, normal.
– It is positive semidefinite with a nullity of p.
–
∥∥∆T

p ∆p

∥∥
1

=
∥∥∆T

p ∆p

∥∥
2

=
∑p
k=0 τ

2
p [k] =

(
2p
p

)
– (n− 2p)

(
2p
p

)
≤
∥∥∆T

p ∆p

∥∥
F
≤ (n− p)

(
2p
p

)
4 Finite Difference Regularization

As Jp(s; γ0) is quadratic in s, its minimum can be found through its Jacobian
∇sJp(s; γ0) and Hessian ∇2

sJp(s; γ0).

Jp(s; γ0) = ‖b− s‖22 + γ0‖∆ps‖22
= bTb− 2sTb + sT

(
In + γ0∆

T
p ∆p

)
s

∇sJp(s; γ0) = 2
(
In + γ0∆

T
p ∆p

)
s− 2b

∇2
sJp(s; γ0) = In + γ0∆

T
p ∆p

4
= Kp (12)

When Jp(s; γ0) is constant, its contours are hyperellipses whose foci are b
and 0.

Property 6. Kp ∈ Rn×n has the following properties:

– It is symmetric and, therefore, normal.
– It is p-diagonal.
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– It is positive definite as for any non-zero vector u

uT
(
In + γ0∆

T
p ∆p

)
u = ‖u‖22 + γ0‖∆pu‖22 > 0

Since Kp is positive defnite, Jp(s; γ0) has a unique global minimum which
can be found by zeroing ∇sJp(s; γ0). Then

s∗p = K−1p b =
(
In + γ0∆

T
p ∆p

)−1
b (13)

Since (13) is large and sparse, an iterative solver is preferable to a direct one in
terms of both computational cost and memory. Kp is symmetric, positive defi-
nite, and sparse by construction and, therefore, the conjugate gradient algorithm
can be used. Its general form is analyzed in detail in [23][7] for clarity, whereas
its special from for the particular regularization problem is outlined in algorithm
1.

Since Kp has n eigenvalues, then at most n iterations are required [23].
However, if the algebraic multiplicity of some eigenvalues is larger than one
or when eigenvalues tend to be clustered, then less iterations are needed [7].
Observe that Kp need not and should not be explicitly constructed as Kps
can be computed in O (n) time knowing only s and 〈τp[k]〉. Therefore, only few
iterations may be required and they are computationally efficient.

Algorithm 1 Conjugate Gradient with Finite Differences

Require: Data b, guess s
[0]
p , threshold η0 > 0, integer p > 0

Ensure: s
[k+1]
p is an approximate solution of Kps = b

1: compute (or retrieve from a lookup table) 〈τp[k]〉
2: r[0] ← b−

(
s
[0]
p + γ0∆

T
p

(
∆ps

[0]
p

))
and p[0] ← r[0]

3: while
∥∥r[k]∥∥

2
> η0 do

4: g[k] ← ∆pp
[k]

5: α[k] ←
∥∥r[k]∥∥2

2
/
(∥∥p[k]

∥∥2
2

+ γ0
∥∥g[k]

∥∥2
2

)
6: s

[k+1]
p ← s

[k]
p + α[k]p[k]

7: r[k+1] ← r[k] − α[k]
(
g[k] + γ0∆

T
p g[k]

)
8: β[k] ←

∥∥r[k+1]
∥∥
2
/
∥∥r[k]∥∥

2

9: p[k+1] ← r[k] + β[k]p[k]

10: k ← k + 1
11: end while
12: return s

[k+1]
p

Since the entries of b are unlabeled, the proposed regularization techniques
can also be viewed as unsupervised learning algorithms. Alternatively, from a
signal processing perspective, regularization can be regarded as a lowpass filter.
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Also, notice that any direct solver for system (13) is another way to conduct
offline data analysis, while iterative solutions are suitable for online analysis.

When p is zero, the cost function is

J0(s; γ0) = ‖b− s‖22 + γ0‖s‖22 (14)

indicating that a tradeoff between the approximation s to b and the overall
energy of s is sought. This yields a smoother signal with shorter spikes. As
spikes often are either a noisy outburst or outliers, this kind of smoothing is
desirable.

Expanding the norms and zeroing ∇sJ0(s; γ0) yields

s∗0 =

(
1

1 + γ0

)
b (15)

Notice that for small values of γ0 the solution s∗0 will be close to b, whereas for
large values will be essentially zero.

In this case the cost function is

J1(s; γ0) = ‖b− s‖22 + γ0‖∆1s‖22 (16)

and approximations to b with smooth first discrete derivative are sought. Thus,
for large values of γ0, the solution s∗1 will be the straight line that best fits b in
the least squares sense.

Property 7. λ(K1) remains bounded with n and

1 ≤ λ(K1) ≤ 1 + 4γ0 (17)

Proof. By application of the Gershgorin theorem.

Property 8. qK1(λ) can be shown to be

qK1
(λ) = (1− λ) arccos

(
(n− 1) cos

(
2− λ

2

))
− arccos

(
(n− 2) cos

(
2− λ

2

))
(18)

Proof. By induction on the determinant of K1 − λIn.

The cost function when p = 2 becomes

J2(s; γ0) = ‖b− s‖22 + γ0‖∆2s‖22 (19)

In this case, approximations to the data set s are sought so that their second
discrete derivative is as smooth as possible.

Property 9. λ(K2) remains bounded with n and

1− 4γ0 ≤ λ(K2) ≤ 1 + 16γ0 (20)
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Proof. By application of the Gershgorin theorem.

Property 10. qK2
(λ) is upper bounded by the Chebyshev polynomial of first kind

of order n defined as

Tn(λ)
4
=


cos (n arccos (λ)), |λ| ≤ 1

cosh (n arccosh (λ)), λ > 1

(−1)
n

cosh (n arccosh (−λ)), λ < −1

(21)

where ‖qK2
(λ)− Tn(λ)‖∞ → 0 as n→ +∞.

Proof. By induction on the determinant of K2−λIn and observing the dominant
terms of both polynomials.

Cost function (12) relies on minimal knowledge regarding b, coded implicitly
through p and γ0. Choosing p is equivalent to model selection. Although method-
ologies such as the MDL are available, two techniques relevant to the specific
problem are examined. One way of selecting p lies in bounding the spectral con-
tent of ∆pb. This matrix-vector multiplication is tantamount to differentiating
b p times and, therefore, increasing the power in high frequencies proportionally
to that frequency. Another way is to simply bound the first derivative, as the
heartbeat rate is primarily a periodic signal. Selecting γ0 is more straightforward
as it is bounded by the spectral requirements of either coefficient matrices. Also,
γ0 can be chosen as the inverse of a fraction of the data vector power.

5 Laplace Operator Approximation

The structure of ∆T
1 ∆1 is very similar to that of −Mn, where Mn denotes the

n× n discrete Laplace operator defined as

Mn
4
= trid

[
−1 2 −1

]
∈ Rn×n (22)

Their nonzero patterns were identical as both are tridiagonal matrices. Moreover,
for 16 ≤ n ≤ 8192∥∥Mn + ∆T

1 ∆1

∥∥
1

=
∥∥Mn + ∆T

1 ∆1

∥∥
2

= 1 (23)

This is attributed to the fact that their difference has only two entries of value 1
regardless of n. Besides norms, another way to examine matrix similarity is the
behavior of their spectra. Let {λk} and {λ′k} denote the sets of sorted eigenvalues
of −Mn and ∆T

1 ∆1 respectively. Also let {gk} and {g′k} denote the sets of
corresponding eigenvectors. Then

ν∗
4
=

1

n

√√√√ n∑
k=1

(λk − λ′k)
2

and µ∗
4
=

1

n

n∑
k=1

‖gk − g′k‖2 (24)
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Table 2. Matrix approximation metrics.

n ν∗ µ∗ n ν∗ µ∗

16 0.0363 0.3558 512 0.0002 0.0465
32 0.0129 0.1739 1024 0.00007 0.0333
64 0.0046 0.1348 2048 0.00002 0.0235
128 0.0016 0.0937 4096 0.00001 0.0166
256 0.0006 0.0661 8192 0.000003 0.0117

are matrix approximation metrics whose values are shown in table 2. Their
values, along with the clustered nature of both λ(−Mn) and λ

(
∆T

1 ∆1

)
, explain

why ν∗ and µ∗ vanish with n, implying this approximation is suitable for large
datasets.

Thus, s∗1 derived from J1(s; γ0) can be approximated by

s∗1 =
(
In + γ0∆

T
1 ∆1

)−1
b ≈ (In − γ0Mn)

−1
b (25)

Additionally, equation (25) can be alternatively expressed in terms of the Neu-
mann matrix power series as

s∗1 ≈ (In − γ0Mn)
−1

b =

+∞∑
k=0

(γ0Mn)
k
b =

+∞∑
k=0

(
γk0Mk

nb
)

(26)

provided that γ0 is selected so that the spectral radius of (In − γ0Mn), namely
the maximum absolute value of its eigenvalues, lies in (0, 1] [7][23]. The rightmost
formulation of (26) suggests that a recursive computation thereof is feasible. In
that case, care should be taken to avoid numerical errors with techniques such as
those for computing vertex centrality in large graphs through adjacency matrix
power series [8].

Notice that for the conjugate gradient to work (In − γ0) must be positive
definite. This is accomplished by selecting γ0 such that its spectrum is strictly
positive, though it is possible in certain cases that conjugate gradient works
provided that s[0] is defined over the subspace spanned by the eigenvectors cor-
responding only to positive eigenvalues [23].

A well known fact regarding Mn is that its eigenvalues are

λk = 2

(
1− cos

(
kπ

n+ 1

))
, 1 ≤ k ≤ n (27)

and its eigenvectors form the discrete sine transform basis [7]

gk =

√
2

n+ 1

[
sin
(
kπ
n+1

)
. . . sin

(
knπ
n+1

)]T
(28)

which is the real part of the Fourier transform. As computationally efficient
algorithms exist for (28), while (27) is trivially computed, it becomes clear that
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Algorithm 2 Laplace Regularization (when p = 1)

Require: Data b, guess s
[0]
1 , flag T , threshold η0 > 0

Ensure: s
[k+1]
1 is an approximate solution of K1s = b

1: if T is true then
2: s

[0]
1 ← b and k ← 0

3: repeat

4: s
[k+1]
1 ← (In + γ0Mn)s

[k]
1 and k ← k + 1

5: until
∥∥∥s[k]1 − s

[k−1]
1

∥∥∥
2
> η0

6: else
7: r[0] ← b− (In − γ0Mn)s

[0]
1 and p[0] ← r[0]

8: while
∥∥r[k]∥∥

2
> η0 do

9: α[k] ←
∥∥r[k]∥∥2

2
/
(∥∥p[k]

∥∥2
2
− γ0

(
p[k]

)T
Mnp[k]

)
10: s

[k+1]
1 ← s

[k]
1 + α[k]p[k]

11: r[k+1] ← r[k] − α[k](In − γ0Mn)p[k]

12: β[k] ←
∥∥r[k+1]

∥∥
2
/
∥∥r[k]∥∥

2

13: p[k+1] ← r[k] + β[k]p[k]

14: k ← k + 1
15: end while
16: end if
17: return s

[k+1]
1

yet another an alternative for obtaining s∗1 based on spectral properties of Mn

exists. To summarize, there are three main methodologies based on the discrete
Laplace operator, namely the tailored conjugate gradient variant of algorithm
1, the Neuman power series expansion, and the spectral method. The first two
are outlined in algorithm 2 and the last one, being of different nature, is shown
separately in algorithm 3.

Algorithm 3 Spectral Laplace Regularization (when p = 1)

Require: Data vector b
Ensure: s1 is an approximate solution of K1s = b

1: return <
[
F−1

[
F [b]�

[
1− γ0λ1 . . . 1− γ0λn

]T ]]

Notice that algorithm 3 despite its memory efficiency and numerical stability
corresponds to a direct solver. This contrasts the iterative algorithms 1 and 2.
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6 Results

A number of standard ECG datasets are available online, contaning heartbeat
rates from subjects with a broad range of potentially severe heart problems
such as arrythmia, tachyarrythmia, braduarrythmia and irregular heartbeat rate.
These conditions usually indicate heart problems such as cardiomyopathy or
perturbed control from the sinoatrial node.

Datasets include the Arrythmia dataset from the UCI online repository
which is suitable for designing and testing classifiers against healthy and arryth-
miac heartbeat rates based on 279 attributes [16]. The St.Petersburg Arrythmia
Database consists of 75 annotated recordings extracted from 32 patients under-
going tests for coronary artery disease. Finally, the standard ECG benchmark
dataset is the MIT-BIH [14] has been used. Its simplest form contains the in-
stantaneous heart rates of two subjects engaged in comparable activities. Each
series consists of 1800 evenly-spaced measurements taken every 0.5 seconds for
a total of 15 minutes of activity with nearly identical mean values and standard
deviations.

Noise removal has been measured by adding white Gaussian noise to the
original waveforms, and then the mean squared error (MSE) between the regu-
larized and the original versions has been computed for the two MIT-BIH time
series. φ =

(
1 +
√

5
)
/2. The SNR was 10dB.

Table 3. MSE for additive white Gaussian noise.

γ0 p = 0 p = 1 p = 1(N) p = 1(S) p = 2
φ/2 0.8119 0.6635 0.7001 0.5991 0.7719
φ/4 1.3833 1.2302 1.2449 1.2395 1.6821
φ/2 0.8350 0.6808 0.7794 0.7021 0.9112
φ/4 1.4176 1.2525 1.3006 1.2890 1.4467

The corresponding execution times are shown in table 4.

Table 4. Time for additive white Gaussian noise (sec).

γ0 p = 0 p = 1 p = 1(N) p = 1(S) p = 2
φ/2 1.5029 1.5033 3.2211 0.4017 1.5025
φ/4 1.5028 1.5001 4.1144 0.4022 1.5000
φ/2 1.5004 6.5013 3.9954 0.4000 1.5011
φ/4 1.5009 1.5090 4.0322 0.4023 1.5009

Outlier smoothing has been performed as follows. 60 random samples have
been replaced by very large values of the same sign as the replaced one and the
MSE between the regularized and the original time series is computed.
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Table 5. MSE for outliers.

γ0 p = 0 p = 1 p = 1(N) p = 1(S) p = 2
φ/2 1.0021 1.8085 2.8196 0.8188 1.9953
φ/4 1.1022 1.0010 2.8345 0.8883 2.0041
φ/2 1.6233 0.9902 2.8133 0.7085 1.8030
φ/4 1.5033 1.0011 3.0011 0.8355 1.9224

The corresponding execution times are shown in table 6.

Table 6. Time for outliers (sec).

γ0 p = 0 p = 1 p = 1(N) p = 1(S) p = 2
φ/2 1.5091 1.5749 7.7632 0.4000 1.5100
φ/4 1.5885 1.5345 8.0123 0.4123 1.5108
φ/2 1.5990 1.5666 8.0990 0.4022 1.5031
φ/4 1.5462 1.5778 8.1435 0.4011 1.5022

Finally, a linear chirp has been added to the original time series with ampli-
tude half of the ECG mean, and start and stop frequency equal to π/8 and π/2.
The MSE between the regularized and the original waveforms is computed.

Table 7. MSE for linear chirp.

γ0 p = 0 p = 1 p = 1(N) p = 1(S) p = 2
φ/2 2.0027 1.9937 4.0002 1.8666 1.8002
φ/4 1.1103 2.0039 6.5835 1.9014 1.8999
φ/2 2.9923 1.9499 8.2400 1.8535 1.4436
φ/4 2.5608 2.0002 8.4562 1.8034 2.0003

The corresponding execution times are shown in table 8.

As a genral remark, the reason regularization performs well is the almost pe-
riodic nature of heartbeat rate. By placing constraints on the second derivative
of s∗p, the non-periodic components, including the chirp, are removed or at least
smoothed. The latter is espcially true for outliers, since they contribute more to
total signal energy. It should be noted that regularization is sensitive to both p
and γ0, with the latter being more important for the specific dataset. Moreover,
increasing p does not necessarily reduce MSE, implying it is dataset dependent.
Thus a global or local minimizing p must be sought. Total execution time sug-
gests the proposed regularization scheme is lightweight enough to be applied to
large data vectors.
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Table 8. Time for linear chirp (sec).

γ0 p = 0 p = 1 p = 1(N) p = 1(S) p = 2
φ/2 3.1146 3.2463 6.8338 0.4100 4.2371
φ/4 3.7734 4.0354 8.0023 0.4053 4.0123
φ/2 4.0453 3.0456 7.8123 0.4618 4.7734
φ/4 4.0228 4.7745 8.9932 0.4995 4.4527

7 Conclusions and Future Work

Finite difference regularization is an intuitive way of impose smoothness con-
straints on a data vector with a large number of erroneous, missing, or outlying
values when a data cleansing model cannot be built. It relies on a tradeoff be-
tween the similarity of the regularized data to the original ones and the smooth-
ness of the regularized data. Also, the relationship to the Laplace operator is
explored for a special case of difference order. The applicability of the above is
demonstrated using ECG biosignals from the MIT-BIH benchmark dataset.

Future research directions are the extension of the cost function to other,
possibly non-differentiable, norms as, another norm may offer a higher level
of data insight. Finally, distributed methods over the Hadoop ecosystem for
machine learning platforms such as Spark can be developed.
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