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EXECUTIVE SUMMARY 

 

The FrailSafe project aims to study all domains of frailty and to create new measures 
of assessments leading to a model which will be able to better understand, detect, 
predict, delay or even revert frailty. To achieve these aims plans are made to devise 
a comprehensive clinical assessment, to develop a real-life sensing and intervention 
platform, and to provide a digital patient model of frailty, sensitive to dynamic 
parameters. Recommendations will be provided to delay frailty, and all this through 
a safe, unobtrusive, acceptable system and cost effective system.  

The aim of workpackage WP4 is to develop methods for the offline and online 
management, fusion and analysis of multimodal and advanced technology data from 
social, behavioral, cognitive and physical activities of frailty older people and apply 
them to manage and analyze new data. Results from the analysis of existing and new 
data will be also used to create user-profiling virtual models of elderly participants. 

The main focus of the deliverable D4.3 is to report on the usage of existing and new 
techniques for real-time online data pre-processing and data reduction. The 
techniques must be suitable for FrailSafe's streaming sensor data, where efficiency, 
scalability and effectiveness issues are of main importance. Furthermore, results 
from the offline multimodal data fusion are examined here to make online data 
preprocessing possible in real time. This will be available by adopting dimensionality 
reduction methods to the streaming nature of the data. Online data fusion is focused 
on maintaining the desired accuracy, while minimizing the overall processing time.  
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1 Introduction 
One of the FrailSafe project’s aim is the real-time monitoring of the elder persons 
towards detecting frailty risks and triggering alarms in case of emergency situations 
(e.g., fall, loss of orientation, or suicidal manifestations in electronic written text). In 
case of such an emergency situation, an alarm needs to be triggered updating the 
VPM (Virtual Patient Model) accordingly. 

Towards this direction, a system that collects the data streams and processes them 
was developed. This system is built on the smartphone, as it is the device that is 
close enough to the participant in order to collect the sensor data and analyze them 
accordingly. The sensor data which are collected at the smartphone in a streaming 
fashion, are the GPS coordinates of the participant and the IMU signals of the vest 
the participant is wearing. These data are used in order to assess the balance of the 
elder person and identify loss of stability, tendency to fall, and loss of orientation. 
Currently the online analysis algorithms are being developed and validated only in 
laboratory environment. In the final FrailSafe product any event identified will be 
transmitted in real-time to the FrailSafe cloud. Additionally, in the FrailSafe cloud 
there is a cluster running Apache Spark which has Spark Streaming module for real-
time data analysis. This cluster is used in order to collect the data streams from 
various sources and process them towards generating summaries and alerts.  

The data processing which has been identified as necessary to be performed in real-
time for the FrailSafe project, is targeted in the areas of fall detection, instability, loss 
of orientation and suicidal manifestations in text. The first three areas lie in the 
scope of this Deliverable, while the last one is in the scope of Deliverable D4.8 about 
the online mode of LingTester.  

The most challenging aspect of fall detection is the distinction between falls and 
sudden movements that occur while performing Activities of Daily Living (ADLs). 
Such movements are usually activites that include high acceleration (eg. walking or 
running) or transitions between activities (eg. getting up from chair). We 
investigated the state-of-the-art on fall detection and evaluated wether it is feasible 
to detect falls using a single sensor. Then we extended our fall classification model 
and built an android application in order to detect falls in real-time. The app which  
used the sensors (accelerometer, gyroscope and magnetometer) of the smartphone 
managed to detect falls with high accuracy. In the final version, the app will be 
modified so that the smartphone will collect the sensor data directly from the 
wearable sensorized vest  and perform the fall detection algorithm based on them. 

Towards identifying loss of stability, we have developed an algorithm based on PCA 
(Principal Component Analysis) decomposition of the raw acceleration signals. The 
processing pipeline starts by filtering the raw data using a high-pass filter. In the 
second step we eliminate the principal component of acceleration and instead use 
the secondary gait component of PCA. Then we reconstruct the decomposed 
secondary gait signals, from the separated euclidean coordinates into a 3D signal 
that enables us to study secondary dynamics to the participant’s gait.  
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Finally, we have analyzed the state-of-the-art on loss of spatial navigation and Loss 
of Orientation (LoO) which has gained much attention from both the research 
community and the industry, lately. The majority of the systems proposed are based 
on tracking information, geo-fencing, i.e. predefined boundaries of where the 
participant is supposed to be, and alerting systems aimed to inform the caregiver 
that a participant is probably wandering. In the next period, we will develop our loss 
of orientation application based on the current detection techniques. 
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2 Streaming Data Management and Processing 

2.1 System architecture 

One of the FrailSafe project’s aim is the real-time monitoring of the elder persons 
towards detecting frailty risks and triggering alarms in case of emergency situations 
(e.g., fall, loss of orientation, or suicidal manifestations in electronic written text). In 
order to be ready to provide real-time monitoring, a system that collects the data 
streams and processes them needs to be developed. 

Data stream processing differs significantly from offline data processing (batch 
processing). Batch processing is used to compute arbitrary queries over different 
sets of data. It usually computes results that are derived from all the data it 
encompasses, and enables deep analysis of big data sets. In contrast, stream 
processing requires ingesting a sequence of data, and incrementally updating 
metrics, reports, and summary statistics in response to each arriving data record. It is 
better suited for real-time monitoring and response functions. We can summarize 
the differences in the following table: 

 

 Batch processing Stream processing 

Data scope Queries or processing over all 
or most of the data in the 
dataset. 

Queries or processing over data 
within a rolling time window, or on 
just the most recent data record. 

Data size Large batches of data. Individual records or micro batches 
consisting of a few records. 

Performance Latencies in minutes to hours. Requires latency in the order of 
seconds or milliseconds. 

Analyses Complex analytics. Simple response functions, 
aggregates, and rolling metrics. 

 

The data processing which has been identified as necessary to be performed in real-
time for FrailSafe project, is targeted in the following areas: 

- Fall detection 

- Instability 

- Loss of orientation 

- Suicidal manifestations in text 

The first three areas lie in the scope of this Deliverable, while the last one is in the 
scope of Deliverable D4.8 about the online mode of LingTester. 
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Figure 1: Streaming data management and analysis. 

 

In Figure 1, we present the currect state of streaming data analysis in FrailSafe 
project. The data coming at streaming mode originate from two sources: GPS signals 
from the satellites and physiological signals from the wearable sensorized vest 
(WWBS). The device which is in charge to collect this data is the smartphone, and 
uses two different software developed by CERTH as part of Task T3.3: 

 The GPS logger sends a request to the satellites to identify its location, and 

stores the reply with the specific details. 

 The WWBS-to-Android API reads the signals generated by the WWBS sensors 

and transmitted by Bluetooth. 

Then there are three components which use the acquired sensor signal streams and 
perform data processing. The first one evaluates the sense of orientation of the elder 
persons by processing the GPS signals. The second and third use the WWBS signals 
to evaluate the instability of the elder person and detect falls that might occurred 
during the monitoring period. 

The components which run the online data analysis has been decided to run on the 
smartphone for various reasons. One of the most important aspects is that by 
running the analysis close to the collection of data, we minimize the delay that is 
caused by data transmission. This way we can guarantee the timely detection of risky 
events (such as falls). We aimed to run the fall detection/loss of stability analysis 
even closer to the device which generates the data, but unfortunately the WWBS 
didn’t have the necessary hardware requirements to do so. Additionally, running the 
analysis on the smartphone instead of transmitting data to the cloud gives us the 
advantage of being able to analyze the data and detect risks even when there is no 
internet connectivity available.  

Currently the online analysis algorithms are being developed and validated only in 
laboratory environment. In the final FrailSafe product any event identified by the 3 
components, will be transmitted in real-time to the FrailSafe cloud. The FrailSafe 
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cloud additionally is running Apache Spark which has Spark Streaming module for 
real-time data analysis. 

 

2.2 Streaming data description 

 

GPS data 

The GPS logger application for the smartphone (developed by CERTH) collects 
measurements about the geographic location of the participants. The location is 
obtained by receiving a signal from GPS satellites, thus it is accurate only for the 
outdoor localization of the participant (in a macroscopic scale). The specific 
measurements obtained are the latitude, longitude, and elevation of each 
geographic location, together with the accuracy of the measurement and the 
orientation of the movement. Combining subsequent points of the location of the 
participant, we can derive to other measurements with more clinical value such as 
the speed of movement, the distance covered etc. The GPS logger application 
additionally measures the number of steps the participant has made, using the 
phone sensors. 

These measurements can be summarized in the following table: 

 

Table 1: GPS logger recorded parameters. 

 

 

Sensorized strap/vest 

The sensorized strap/vest which is manufactured by our partner Smartex, is 
equipped with a series of sensors which provide useful measurements for FrailSafe 
participants. However not all of them are transmitted to the smartphone for 
analysis, because of real-time limitations. The data which are transmitted by the 
WWBS and captured by the API are the IMU measurements. These refer to the 

Recorded 
parameter Description Sampling rate 

Latitude 
Satelite estimation of the latitude of the 
geolocation point variable 

Longitude 
Satelite estimation of the longitude of the 
geolocation point variable 

Elevation Elevation of the geolocation point (sea level) variable 

Speed Indicative speed of movement variable 

Accuracy Accuracy of the geolocation variable 

Bearing Orientation of the movement variable 

Steps Step counter (based on android sensor) variable 
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participant’s specific force, angular rate, and the magnetic field surrounding the 
body in X-Y-Z axis measured using accelerometer, gyroscope and magnetometer, 
respectively. These measurements are needed in order to run fall detection and loss 
of orientation algorithms. 

 

Table 2: WWBS recorded parameters. 

Recorded 
parameter Description Values (1 unit) 

Sampling 
rate 

AccX-Y-Z Value Accelerometer in X-Y-Z axes 0.97 10-3 g 25Hz 

GyroX-Y-Z Value Gyroscope in X-Y-Z axes 0.122 °/s 25Hz 

MagX-Y-Z Value Magnetometer in X-Y-Z axes 0.6 µT 25Hz 

 

 

2.3 Spark Streaming 

A data stream could be defined as an unbounded sequence of data arriving 
continuously. Streaming divides continuously flowing input data into discrete units 
for processing. Stream processing is low latency processing and analyzing of 
streaming data. Spark Streaming is an extension of the core Spark API that enables 
scalable, high-throughput, fault-tolerant stream processing of live data. Spark 
Streaming is for use cases which require a significant amount of data to be quickly 
processed as soon as they arrive. Example real-time use cases are: 

 Website monitoring, Network monitoring 

 Fraud detection 

 Web clicks 

 Advertising 

 Internet of Things: sensors 

Spark Streaming supports data sources such as HDFS directories, TCP sockets, Kafka, 
Flume, Twitter, etc. Data streams can be processed with Spark’s core APIS, 
DataFrames SQL, or machine learning APIs, and can be persisted to a filesystem, 
HDFS, databases, or any data source offering a Hadoop OutputFormat. 

Figure 2: Spark streaming input and output streams. 
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Internally, Spark streaming works as follows: It receives live input data streams and 
divides the data into batches, which are then processed by the Spark engine to 
generate the final stream of results in batches, as shown in the following figure. 

 

Figure 3: Spark streaming data division to RDD batches. 

  

Spark Streaming provides a high-level abstraction called discretized 
stream or DStream, which represents a continuous stream of data. DStreams can be 
created either from input data streams from sources such as Kafka, Flume, and 
Kinesis, or by applying high-level operations on other DStreams. Internally, a 
DStream is represented as a sequence of Resilient Distributed Datasets (RDDs), 
which are the basic abstraction in Spark and represent an immutable, partitioned 
collection of elements that can be operated on in parallel. 

 

2.4 Frailsafe Spark Streaming Application 

In the terms of Frailsafe project, Spark Streaming is planned to be used to store 
streaming data in the Frailsafe Database (HBase). More specifically, the sources of 
data that will be streamed in HBase, as described above, are the GPS and the WWBS 
shown in Figure 1.  

The Spark-Streaming Application that has been designed and developed does the 
following: 

1. Reads streaming data stored in CSV format in a directory in Hadoop File 

System (HDFS). 

2. Processes the streaming data. 

3. Generate alerts based on the processed data values. 

4. Writes the processed data and alerts to an HBase Table. 

More specifically, the aim of the application is to run permanently in FrailSafe 
Amazon Cloud, providing a continuous check for new data of the specified sources. 
When new data is inserted into the HDFS the application immediately starts 
processing it by transforming it into suitable form to fit HBase Schema that has been 
determined. After the completion of the processing, the storing procedure starts. 
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3 Real-time Data Analysis 

3.1 Fall dectection 

Falls are a common cause of injury among older people. According to the World 
Health Organization, 28–35% of people aged 65 and over fall at least once a year 
with serious consequences such as heavy injuries and even death. Additionally, the 
moments after a fall are very crucial. Many people experience what is called the 
“long lie,” a long period of immobility after a fall that can have serious complications 
in a person’s health. Unless precautions are taken, the number of injuries and the 
costs associated with fall-related trauma will double in the near future. Fall detection 
is therefore considered as an extremely important aspect of healthcare.       

The most challenging aspect of fall detection is the distinction between falls and 
Activities of Daily Living (ADLs) such as sitting, standing or walking since falls typically 
occur while performing daily activities. In particular, ADLs with high acceleration are 
often confused with falls. Misinterpreting a fall as an ADL can have serious effects on 
the subject’s health. Therefore, a fall detection system should be able to accurately 
distinguish falls from ADLs immediately when they occur. This requires falls to be 
automatically detected in real time. Another challenge is to make the system as 
simple as possible, with low false-alarm rates. Subjects using the system should feel 
comfortable and their quality of everyday life should not be affected.  Accurate, 
reliable and real-time fall detection systems are therefore essential.   

 

3.1.1 Current research state-of-the-art 

Significant research has been conducted in this field and various fall detection 
systems have been proposed in the past years. (Noury et al, 2007) and (Yu et al, 
2008) have investigated the principles of fall detection and reviewed early works on 
the subject. Fall detection approaches can be divided into two main categories: 
vision-based and wearable device (motion sensor)-based systems. 

 Several context aware systems that use devices such as cameras or infrared sensors 
to detect falls within an environment have been developed. (Rougier et al, 2007) 
used human shape deformation to track the person’s silhouette in recordings taken 
from four cameras. Falls and ADLs were classified with 98% accuracy. In (Mastorakis 
and Makris, 2012), a human 3D bounding box was created and the Kinect infrared 
sensor was used to accurately detect falls without any prior knowledge of the 
environment. (Olivieri et al, 2012) used motion templates taken from a camera to 
recognize certain ADLs and detect falls, achieving 99% recognition rate. However, 
these approaches have certain limitations; the system can only monitor activities 
within the environment and thus, outdoor activities are excluded, restricting the 
mobility of the user. Also, other people moving within the same environment might 
also “confuse” the system and trigger false alarms in some cases. 

The use of wearable motion sensors has been preferred by many researchers. With 
the advances in micro electro-mechanical systems (MEMS) technology, sensors such 
as accelerometers, gyroscopes and magnetometers have been integrated within 



H2020-PHC–690140 – FRAILSAFE D4.3 Online analysis of data (vers. a) 

 

December 2016 -15- 

 

small motion sensor units. Small devices that contain the above sensors can be used 
to collect movement data and detect falls. They are compact, light, inexpensive and 
have low power consumption. They can be placed in the subject’s pockets or be 
easily attached at different body parts without making the subject uncomfortable; 
thus, they make the analysis of outdoor activities possible. Different body parts have 
been proposed for the sensor placement that improve the accuracy with minimum 
intrusion to the subject’s everyday life. (Yang and Hsu, 2010) have examined the 
fundamentals of such sensors as well as the optimal position on the human body for 
sensor placement.  

In fall detection studies, typically simple thresholding is used. A fall is detected when 
the acceleration suddenly increases due to the change in orientation from upright to 
lying position (Bourke et al, 2007). In (Bourke et al, 2010), the results of certain 
threshold-based methods that consider fall impact, velocity and posture have been 
assessed and tested on elderly subjects, achieving 94.6% sensitivity. Thresholding 
methods sometimes tend to miss “soft falls” meaning falls that might not exceed the 
threshold. Also, certain ADLs with high acceleration might exceed the threshold and 
get misclassified as falls. 

The main classification problem is to distinguish falls from ADLs. Machine learning 
techniques have been used to achieve more reliable results. Every recorded 
movement in the fall and activity database (Özdemir and Barshan, 2014) has its own 
pattern. By extracting features from the raw data, these patterns can be classified by 
different classification methods. Before raw data are given to different classification 
algorithms, they must be pre-processed using a windowing technique. Such a 
technique divides the sensor signal into smaller time segments (i.e., windows) and a 
classification algorithm is applied separately on each window, producing a 
classification result. After pre-processing, features from the time or spatial domain 
are extracted to feed trained classifiers such as artificial neural (ANN) or Bayesian 
networks (BN), support vector machines (SVMs), decision trees, k-nearest neighbors 
(k-NN), etc. (Kaldegari et al. 2012) used statistical features such as maximum, 
minimum, mean, range, variance and standard deviation extracted from a waist-
worn tri-axial accelerometer to investigate the performance of various classifiers on 
fall detection. The multilayer perceptron yielded the best sensitivity (90.15%). 
(Özdemir and Barshan, 2014) added autocorrelation coefficients and discrete Fourier 
transform (DFT) coefficients extracted from data acquired by sensors placed at 
different body parts. Six classifiers (k-NN, SVM, ANN, least-squares method, Bayesian 
decision making, dynamic time warping) were used to assign a fall or ADL class label 
to the feature vectors concatenated from all sensors. All methods achieved higher 
than 97.47% and 93.44% sensitivity and specificity, respectively. (Yuwono et al, 
2012) obtained data from a single waist-worn tri-axial accelerometer and extracted 
features using the Particle Swarm Optimization (PSO) clustering method. Then, they 
proceeded to classify the data achieving above 98.6% sensitivity in detecting falls. 
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3.1.2 Sensor placement 

Earlier studies report conflicting results on the best location on the human body to 
carry a single fall detection device. Some studies report that the waist is the best 
place, since it is close to the body’s center of gravity (Bourke et al, 2010; Özdemir, 
2016), while some claim that the chest or the head is better [9, 15-17]. Several 
studies consistently agree that the arms and the legs are not suitable parts of the 
body to carry a fall detection device since they are associated with higher 
accelerations (Kangas et al, 2007; Bianchi et al, 2010). Therefore, resolving this issue 
through experiments that follow standardized procedures will be a valuable 
contribution. (Özdemir and Barshan, 2014) acquired data from sensors placed on six 
body parts including head, chest, waist, wrist, thigh and ankle. In order to proceed 
with classification, the features extracted from each location are concatenated to a 
single feature vector leading to a high-dimensional feature space. However, fall 
detection often needs to be performed in real-time which requires lighter processing 
that can be achieved either through dimensionality reduction or selection of a single 
sensor unit located at the optimal position.  

In this work, we attempt to determine whether placing a single IMU sensor on the 
body is sufficient for accurately detecting falls, and which is the optimal location for 
the sensor placement on the human body. To achieve this, we evaluate the activity 
and fall dataset created by (Özdemir and Barshan, 2014) with respect to several 
classification algorithms using only the data acquired from a single sensor location 
each time. The classification performance in terms of accuracy is used as the 
criterion to reveal the optimal sensor location. Since data from a single sensor unit 
are used, there is no need for dimensionality reduction, making the proposed 
methodology computationally efficient and thus, more capable of real-time fall 
detection. 

 

3.1.3 Dataset 

With Erciyes University Ethics Committee approval, seven males (24 ±3 years old, 
67.5 ±13.5 kg, 172 ± 12 cm) and seven females (21.5 ± 2.5 years old, 58.5 ± 11.5 kg, 
169.5 ± 12.5 cm) healthy volunteers participated in the study with informed written 
consent. Six wireless sensor units were tightly fitted with special strap sets to the 
subjects’ heads, chests, waists, right-wrists, right-thighs, and right-ankles.  Each unit 
comprises three tri-axial devices (accelerometer, gyroscope, and 
magnetometer/compass) with respective ranges of ±120 m/s2, ±1200o/s, and ±1.5 
Gauss, and an atmospheric pressure meter with 300–1100 hPa operating range, 
which we did not use. Raw motion data were recorded with a sampling frequency of 
25 Hz. Acceleration, rate of turn, and the strength of the Earth’s magnetic field along 
three perpendicular axes (x, y, z) were recorded for each unit (Yuwono et al, 2012). A 
set of trials consists of 20 fall actions (front-lying, front-protection-lying, front-knees, 
front-knees-lying, front-right, front-left, front-quick-recovery, front-slow-recovery, 
back-sitting, back-lying, back-right, back-left, right-sideway, right-recovery, left-
sideway, left-recovery, syncope, syncope-wall, podium, rolling-out-bed) and 16 ADLs 
(lying-bed, rising-bed, sit-bed, sit-chair, sit-sofa, sit-air, walking-forward, jogging, 
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walking-backward, bending, bending-pick-up, stumble, limp, squatting-down, trip-
over, coughing-sneezing). These are adopted from (Abbate et al, 2010) and lasted 
about 15 s on the average. The 14 volunteers repeated each test for five times. Thus, 
a considerably diverse dataset comprising 1400 falls (20 tasks × 14 volunteers × 5 
trials) and 1120 ADLs (16 tasks × 14 volunteers × 5 trials) was acquired, resulting in 
2520 trials. Many of the non-fall actions included in the dataset are high-impact 
events that may be easily confused with falls. 

 

3.1.4  Feature Extraction 

Before we train the classifiers, we need to identify and isolate the actual 
experimental events since raw data acquired from the sensors include several time 
points that correspond to immobility before and after the detected fall event. In 
order to identify the fall event, we detect the peak of the total acceleration. Total 
acceleration is defined as:  

 

AT=�Ax
2+Ay

2+AZ
2  

 

(1) 

where Ax, Ay and Az are the accelerations along the x, y and z axis respectively.  

In contrast to (Özdemir and Barshan, 2014), we measure the total acceleration on 
each sensor separately. For each sensor, we keep two seconds of the sequence 
before and after the peak acceleration, that is 50 values before and after the peak 
given the sampling frequency of 25 Hz. Therefore, for each test, we obtain six arrays 
of size 9x101, one for each of the six IMUs (sensor locations). 

We parameterize each one of the nine measured events using the features proposed 
in (Özdemir and Barshan, 2014): minimum, maximum and mean values, skewness, 
kurtosis, the first 11 values of the autocorrelation sequence and the first five 
frequencies with maximum magnitude of the DFT along with the five corresponding 
amplitudes, resulting in a feature vector of dimensionality 234 (26 features for each 
one of the nine measured signals) for each test. 

3.1.5 Classification Results 

We evaluate the ability of the above features to discriminate between falls and ADLs 
using several classification algorithms implemented by the WEKA machine learning 
toolkit [20] including J48 decision tree, k-nearest neighbors algorithm (IBk) [21], 
Random Forest (RF) [22,23], Random Committee (RC) and SVM [24] with RBF Kernel 
(SMO). The classifiers in our study were selected in an attempt to evaluate 
representative algorithms for each one of the main categories of machine learning 
classifiers including decision trees (J48), support vector machines (SMO), ensemble 
classifiers (RF, RC) but also simple methods such as k-NN (IBk). 
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We evaluated binary classification performance using accuracy, sensitivity and 
specificity. Evaluation was performed in a 10-fold cross validation setting. 

 

Table 3: Evaluation all classification models. 

Classification 
Model 

Sensor 
location 

Accuracy Sensitivity Specificity 

(a) J48 

Head 96.48 91.06 95.76 

Chest 97.53 97.70 97.31 

Waist 97.96 97.99 97.94 

Wrist 93.71 94.78 92.37 

Thigh 98.24 98.71 97.67 

Ankle 97.45 97.49 97.40 

(b) IBk 

Head 93,70 92,84 94,77 

Chest 97,45 97,28 97,67 

Waist 98,61 98,85 98,30 

Wrist 89,74 84,13 96,77 

Thigh 96,42 94,20 99,19 

Ankle 95,58 93,34 98,39 

(c) RC 

Head 97,17 98,57 95,41 

Chest 98,61 99,07 98,03 

Waist 98,89 99,28 98,39 

Wrist 94,63 96,35 92,47 

Thigh 98,77 99,00 98,48 

Ankle 98,77 98,85 98,66 

(d) RF 

Head 96,77 99,36 93,51 

Chest 98,61 99,28 97,76 

Waist 99,28 99,64 98,84 

Wrist 95,62 98,28 92,29 

Thigh 99,20 99,43 98,93 

Ankle 98,77 99,07 98,39 

(e) SMO 

Head 97,29 97,92 96,49 

Chest 98,89 99,28 98,39 

Waist 99,36 99,50 99,19 

Wrist 96,78 97,71 95,61 

Thigh 99,48 99,21 99,82 

Ankle 98,57 98,85 98,21 

 

Table 3 shows the achieved results in terms of accuracy, sensitivity and specificity for 
each sensor location for the J48, IBk, RC, RF and SMO algorithms, respectively. The 
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position resulting in the best accuracy is highlighted in boldface font in the table. 
Figure 4 shows a comparative diagram across different body locations for each 
classification model.  

 

Figure 4: Bar graph showing the accuracy of all classification models for all sensors. 

 

The accuracy, sensitivity and specificity of the classification show good results for all 
classifiers. The overall highest accuracy (99.48%) was obtained with the thigh sensor 
location using the SMO classifier. For this case, the obtained sensitivity, i.e., the 
fraction of actual falls which are correctly identified as such, is 99.21% and the 
specificity, that is, the proportion of ADLs, that were correctly classified as such, is 
99.82%.  

Additionally, we observe that placing the sensors at the waist achieves the highest 
accuracy values for the RF (99.28%), RC (98.89%) and k-NN, IBk (98.61%) classifiers. 
Such results agree with our intuition for the superiority of waist location based on 
the fact that it is near the body's center of gravity. Finally, for the J48 classifier, the 
most accurate sensor location is the thigh, reaching 98.24% accuracy.  

To summarize, the waist and thigh sensors achieve the highest accuracies for all 
classifiers, followed by the chest and ankle sensors. The wrist sensor is the one with 
the lowest accuracy for all classifiers. It is noteworthy, however, that placing a single 
sensor at any of the proposed locations achieves accuracy higher than 90% and there 
are cases where the differences among the sensors are not significant, especially 
when comparing the most accurate sensor locations such as the thigh and the waist. 

 

3.1.6 Android app 

In cooperation with CERTH, an Android app has been developed that uses the 
described fall detection algorithm towards detecting falls in real-time. The app 
currently uses the sensors (accelerometer, gyroscope and magnetometer) of the 
smartphone device purchased for FrailSafe (Nexus 5X). The data of the input sensors 
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are packetized in time windows and for each window the selected features are 
extracted. Then based on the extracted features each window is classified as “Fall” 
or “ADL”. The interface of the mobile app is shown in Figure 5. 

 

Figure 5: Fall detection app for Android. 

 

We have tested the app in lab environment and have got high classification accuracy 
results. In the future, the app is going to be modified, so that the smartphone will 
collect the sensor data of the WWBS and perform the fall detection algorithm on 
them. 

 

3.2 Loss of stability 

Falls, as analyzed above, are a common cause of injury among older people and one 
of the most frequent injury-inducing events as a result of ageing. While significant 
research had been done on the field of fall detection, and numerous systems have 
been proposed as a result, fall detection consists of a binary decision system, and 
there is a need for research on a continuous metric tracking the instability of an 
elder’s gait pattern in order to assess the risk of a fall event occurring.  Failsafe aims 
to implement innovative strategies to accurately assess the Loss of Stability (LoS) of 
an elder person, and estimate the risk falling. 

3.2.1 Related Work – State of the art 

Loss of Stability, as described above, overlaps with the general field of gait analysis, 
where significant research has been conducted for clinical applications, and 
specifically for assessing the state of ageing. Specialists assess participants’ health by 
using various methods that measure the parameters which most clearly represent 
the human gait. Literature research shows that the following parameters are 
estimated: 

• Velocity 
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• Short step length (linear distance between two successive placements of 
the same foot) 
• Long step or stride length (linear distance between the placements of both 
feet) 
• Cadence or rhythm (number of steps per time unit) 
• Step width (linear distance between two equivalent points of both feet) 
• Step angle (direction of the foot during the step) 
• Short step time 
• Swing time for each foot (time from the moment the foot lifts from the 
floor until it touches it again, for each foot) 
• Support time (time from the moment the heel touches the floor until the 
toes are lifted, for each foot) 
• Distances travelled 
• Gait autonomy (the maximum time a person can walk, taking into account 
the number and duration of the stops) 
• Duration of the stops 
• Existence of tremors when walking 
• Record of falls 
• Uneven terrain covered (height difference between drops and rises) 
• Routes taken 
• Gait phases 
• Direction of leg segments 
• Ground Reaction Forces 
• Angles of the different joints (ankle, knee, hip) 
• Electrical activity produced by muscles (EMG) 
• Momentum and forces 
• Body posture (bending, symmetry) 
• Maintaining gait over long time periods 

 
While several of the above parameters (e.g. Gait phases, body posture, assymetrical 
step time etc.) can provide an insight on the asymmetry/instability of an elder 
persons walking pattern, most of the related literature makes use of systems 
available only in a controlled indoor scenario, i.e. Non Wearable Systems (NWS), 
such as body tracking systems (Vicon), 3D Cameras (Kinect) and other tracking 
equipment that can produce a very accurate reconstruction of a person’s gait. 
Wearable Systems (WS), like the Frailsafe WWBS, do not offer so accurate 
measurements, but provide sustainability on long-term analysis, and can be applied 
to the outdoors scenario as well and evaluate gait during the participant’s everyday 
activities outside the laboratory. One of the most promising and widely used 
wearable sensors in recent studies is the inertial sensor. In the following paragraphs, 
we present an account of studies that demonstrate the validity and wide range of 
applications of this type of sensor in recent research. 
 
Studies such as Anna et al.’s in which they contrast gait symmetry and gait normality 
measurements obtained with inertial sensors and 3D kinematic measurements and 
clinical assessments, demonstrate that the inertial sensor-based system not only 
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correlates well with kinematic measurements obtained through other methods, but 
also corroborates various quantitative and qualitative measures of recovery and 
health status. This type of sensor has also proven to be very useful to create fall-risk 
prediction models with a high degree of accuracy (62%–100%), specificity (35%–
100%) y sensitivity (55%–99%), depending on the model, as shown in the study by 
(Howcroft et al., 2013). Adachi et al. developed a walking analysis system that 
calculates the ground reaction force, the pressure centre, reactions and movement 
of each joint and the body orientations based on portable force plates and motion 
sensors. They compared a 3D motion analysis system with their system and showed 
its validity for measurements of ground reaction force and the pressure centre 
(Adachi et al., 2012). Novak et al. have recently developed a system based on inertial 
and pressure sensors to predict gait initiation and termination. They demonstrated 
that both types of sensors allow timely and accurate detection of gait initiation, with 
overall good performance in subject-independent cross-validation, whereas inertial 
measurement units are generally superior to pressure sensors in predicting gait 
termination (Novak et al., 2013). 
 
Inertial sensors can be used to estimate walking speed by various methods, which 
are described in the review by (Yang and Li, 2012). With a view to improving the 
usability of these systems, studies such as (Salarian et al., 2013) focus on reducing 
the number of sensors that have to be placed on the body. They have also have 
managed to estimate movements of thighs from movements of shanks to reduce the 
number of sensing units needed from 4 to 2 in the context of ambulatory gait 
analysis. Inertial Measurement Units (IMUs) are one of the most widely used types 
of sensors in gait analysis. Anna et al. developed a system with inertial sensors to 
quantify gait symmetry and gait normality (Anna et al., 2014), which was evaluated 
in-lab, against 3D kinematic measurements; and also in situ, against clinical 
assessments of hip-replacement patients, obtaining a good correlation factor 
between the different methods. In another recent study, Ferrari et al. presented an 
algorithm to estimate gait features which were compared with camera-based gold 
standard system outcomes, showing a difference in step length below 5% when 
considering median values (Ferrari et. al., 2013). In diseases where gait disorders are 
a symptom such as Parkinson’s, we find several applications of sensors of this type 
(Salarian et. al., 2004): Tay et al. presented a system with two integrated sensors 
located at each ankle position to track gait movements and a body sensor positioned 
near the cervical vertebra to monitor body posture. The system was also able to 
measure parameters such as maximum acceleration of the participants during 
standing up, and the time it takes from sit to stand (Tay et. al., 2013). 
 
Still, no significant work has been done on establishing a metric that indicates the 
gait instability, while complying with the light set of specifications needed for a 
wearable system to be as unobtrusive as possible. Considering the latter, CERTH 
developed a technique in order to accurately estimate LoS by using only one (1) IMU, 
placed near the chest, as designed in the Frailsafe vest, by estimating the gait 
orientation asymmetry of the user. 
 



H2020-PHC–690140 – FRAILSAFE D4.3 Online analysis of data (vers. a) 

 

December 2016 -23- 

 

3.2.2 LoS via Secondary Gait Component Analysis 

 

Following the detailed literature review above, and the restrictions imposed by the 
specifications of the vest wearable system, CERTH developed an algorithm based on 
PCA decomposition of the raw acceleration signals provided by the Inertial 
Measurement Unit of either a mobile phone, or the WWBS, communicated to the 
gateway smartphone device for processing. As can be seen in Figure 6, the 
processing pipeline consists of the following steps: 

1. High-Pass filtering of the raw data: This step is necessary to eliminate any 

sensor bias imposed by the sensors or the environment (e.g. gravity) and 

study only the dynamic components of the acceleration. 

2. PCA: Principal Component Analysis (PCA) is commonly used in signal 

processing algorithms because it accurately decomposes noisy multi-

dimensional data into its principal and secondary components. Considering 

that we are analyzing gait asymmetry/instability, and the fact that a 

Kinematic measurement’s principal component concerns the Kinematics 

regarding the gait orientation of the participant, we eliminate the Principal 

Component and instead use the Secondary Gait Components. Our main 

hypothesis is that these measurements should be considerably lower in a 

stable gait pattern, and their energy should increase as the gait becomes 

more unstable. 

 

 

Figure 6. Loss of Stability estimation pipeline. 

 

3. Reconstruction & Integration: In these steps, we reconstruct the 

decomposed secondary gait signals, from the separated Euclidean 

coordinates into a 3D timeseries signal that enables us to study secondary 
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dynamics to the participant’s gait (lateral movements, minor instabilities, 

staggering etc.). 

 

3.2.3 Preliminary Evaluation 

Since the detection system is in prototype-phase and all calculations are evaluated in 
an offline setup, we performed a preliminary test with 5 healty participants that 
were asked to perform 10 second walking sessions with increasing instability and 
staggering and studied the results. As can be seen in Figure 7, the techniques’ output 
signal, which should represent the gait’s secondary motion dynamics, shows 
consistent increase in amplitude, which is encouraging for the viability of the 
estimator. 
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Figure 7. Output Signal color-labeled (x, y, z) for increasing state of severity (top to down). 

 

Figure 8 shows the Signal Power corresponding to each subject (different slices), and 
each trial with increasing instability (blue-green-red). In each case, the signal power 
increased as the participant exhibited poorer gait stability.  
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Figure 8. Results from our technique show a distinctive difference between different levels of 
instability severity. 

 

Given the encouraging results, CERTH will proceed to implement the technique on 
the mobile device, to process live vest data, and perform the evaluation on a larger 
set of participants, that may exhibit non-induced instability and establish different 
severity thresholds, depending on the signal power’s range for the participants, as 
well as also explore the possibility of establishing a dynamic thresholding mechanism 
that adapts to the participant’s gait pattern. 

 

3.3 Loss of orientation  

Loss of Orientation is a potentially life-threatening and common behavior seen in the 
elderly, specifically Dementia and Alzheimer’s patients. Between 60% to 70% of all 
patients with Alzheimer’s will wander, and possibly get lost, at some point during the 
course of their disease, of these a staggering 50% will die if they are not found within 
24 hours. Loss of spatial navigation, and more generally, Loss of Orientation (LoO) 
has gained much attention from both the research community and the industry, 
trying to explain the physiological reasons behind it, as well as develop necessary 
systems in order to detect it. The majority of the systems proposed are based on 
tracking information, geo-fencing, i.e. predefined boundaries of where the 
participant is supposed to be, and alerting systems aimed to inform the caregiver 
that a participant is probably wandering. However, these systems assume a higher 
level of severity, where the user is usually strictly monitored in a controlled manner, 
and doesn’t qualify as an early warning system (EWS) for initial symptoms. CERTH 
aims to explore LoO detection possibilities and implement a system that 
automatically detects a probable wandering episode using a combination of 
standard and novel detection techniques and serve as a EWS for the prefrail and 
detect early signs of dementia. 
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3.3.1 Related Work – State-of-the-art 

Loss of Orientation is among the most problematic, frequent, and dangerous 
behaviors of people with dementia (PwD) and the frail, accounting for 15–60% of 
individuals with a clinical diagnosis of dementia and related impairments (Ballard et 
al., 1991). It includes a variety of behaviors, which often originate from diverse 
factors (Chan et al, 2003). A lot of research has revealed that the frequent wanderers 
are more likely to experience adverse events such as falling, elopement, getting lost, 
and emotional distress. Furthermore, wandering is also the main reason of early 
institutionalization. Traditional methods to prevent the elderly from wandering 
include imposing physical restraints and medication. Because of the physical or 
psychological problems caused by physical restraints and the side effects of 
neuroleptic drugs, traditional methods are not always effective for protecting 
wanderers, especially for those who are prone to falling or unsafe wandering (Moore 
et al., 2009). Alternatively, nonpharmacological intervention has been recommended 
to manage rather than prevent wandering, highlighting a shift from prevention 
toward assisting safe walking. The main methods of nonpharmacological 
intervention include motion tracking, behavioral intervention, cognitive 
rehabilitation, and design/modification of living environments (Cohen-Mansfield and 
Werner, 1998). 

3.3.1.1 Problem definition 

Different attempts for the classification of wandering behavior exist (Algase et al., 
2001, Algase et al., 2004). One of the most cited classification proposed by (Martino-
Saltzman et al., 1991) categorizes wandering movement of the elderly into three 
different spatial categories: (1) Pacing: back and forth movement between any two 
points (i.e., physical locations); (2) Lapping: circuitous movement revisiting some 
points sequentially along a path; and (3) Random: haphazard movement without 
repeating points in a traveling sequence. Additionally, (Algase et. al, 1991) 
introduced temporal factor into the aforementioned spatial patters and represented 
wandering movement as spatiotemporal locomotion. The locomotion refers to the 
rhythmical movements consisting of two phases: walking and nonwalking. During the 
walking phase, the disoriented participant would wander following the pacing, 
lapping, and random pattern. After every walking phase, there will be a nonwalking 
duration, which may differ from person to person and be closely related to the 
environmental situations. 

3.3.2 Detection techniques 

There are two main research objectives pertaining to wandering of the PwD: 
wandering evaluation and wandering detection. Wandering evaluation targets 
recognition, evaluation, and testing of wandering movements to find new patterns 
and characteristics of wandering behavior based on offline analysis of trajectory data 
collected from sensors deployed in indoor environments. Wandering detection 
focuses on design, development, and deployment of assistive systems to provide the 
elderly safety assurance based on online observations of sensors deployed in indoor 
or outdoor settings. Three types of key techniques were applied in existing work for 
wandering research: event monitoring, trajectory tracking, and localization 
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combined with Geo-fence technique. Frailsafe aims to exploit the GPS Tracker app to 
employ both the geo-fencing technique, and the trajectory tracking technique to 
explore the best possible strategy for a robust and stable Loss of Orientation System, 
as well to propose a new metric to detect random, but spatially relatively stationary 
patterns that elude detection from the abovementioned techniques. 

3.3.2.1 Geo-fencing 

Geofencing is one of the components in the wider spectra of Ambient Assisted Living 
related applications. Such applications are meant to provide support to people with 
disabilities or to those impaired, as well as to their caretakers. Within this context, 
geofencing targets the safe mobility of such people. A geofencing service monitors 
constantly the position of a person and automatically generates alerts and 
notifications when the person enters, leaves or moves within a specific geographic 
area, allowing the detection of being lost and generating appropriate intervention. 
The service can be addressed to elderly people, being able to send an alert (such as a 
SMS message) to a caregiver when the participant has averted a predefined distance 
from a selected location. This type of service has become more popular in the 
modern society since it has the ability of increasing the quality of life for the elderly 
people, many of which are living independently. (Wong et. al., 2009), present a 
geofencing service application. They provide a complete system for tracking persons, 
especially elderly people, and their application can be extended to provide a 
geofencing solution. The system consists of a wearable AGPS (Assisted Global 
Positioning System) terminal with two-way communication capability and a GPS 
(Global Positioning System) assistance data server. This approach has a drawback 
because it forces the end-user to use a dedicated device for GPS based location 
acquisition and for the data transmission to the server. In their paper (Ryoo et. al., 
2012) present a geofencing service solution which uses mobile devices for location 
acquisition and data transmission. They developed an energy-aware proactive 
framework that uses different communication technologies and sensors based on 
their energy usage, provided accuracy and availability. The proposed solution tracks 
the location of a person outdoor using the GPS sensor of the mobile device and 
indoor using 3G or WiFi interfaces. Frailsafe already employs these technologies in 
the outdoor monitoring app GPS Tracker, and CERTH aims to develop a technique 
that exploits existing mobility patterns to create geofencing boundaries, making it 
easier for the caretaker to deploy the system on a pre-frail participant, without 
needing to manually set predefined boundaries. 

3.3.2.2 Trajectory tracking-based LoO detection 

The trajectory tracking technique is used to acquire fine-grained motion trajectories, 
enabling the detection of spatiotemporal wandering trajectories based on the 
wandering patterns. (Martino-Saltzman et al., 1991) investigated travel patterns of 
wandering participants based on data acquired from electronic ankle tags worn by 
participants. In their experiments, an automatic detection system-activated video 
recording of travel activity in real time to record the ground truth, and four different 
patterns of direct, pacing, lapping, and random movement have been found from 
more than 10,000 recordings of 40 participants. Among these patterns, the direct 
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pattern is normal and the remaining patterns link to wandering behavior. A similar 
work proposed by (Algase et al., 2003) uses commercial off-the-shelf biomechanical 
devices to capture movements of residents with dementia in nursing homes. 
Wandering behavior is determined by either counting the number of steps made by 
residents (StepWatch, National Institute of Child Health and Human Development, 
Rockville, USA and StepSensor, TippToes Ltd, Tippeary, Ireland) or measuring 
locomotion in three-dimensional spaces (Actillume, PHILIPS, Eindhoven, Netherlands 
and TriTrac-R3D, The Consortium to Lower Obesity in Chicago Children (CLOCC), 
Chicago, USA). The authors found that StepWatch sensor is particularly effective in 
assessing the amount of wandering behavior. A series of studies focused on path 
tortuosity has been performed by (Kearns et al., 2010) using RFID devices in common 
indoor living spaces. Path tortuosity is defined as the number of changes in 
directions of successive movement paths, and measured by leveraging fractal D 
(fractal dimension) technique. The value of fractal D ranges from 1, where a path 
follows a perfectly straight line, to a value of 2, where the path is tortuous (in line 
with the random pattern26). Their experimental results correctly classified all but 
two residents with dementia, and achieved a sensitivity of 0.857 and a specificity of 
0.818. 

The Escort system (Taub et al, 2011) is designed to protect wander-prone residents 
from experiencing negative events. The mesh-networked badges carried by users 
can sense location and communicate with a central server. Location data are 
obtained from a ‘talking lights’ optical location setup that uses ordinary light fixtures 
and other light sources as location beacons. Caregivers were responsible for keeping 
devices charged, attaching them to residents’ clothing in the morning, and removing 
them at night. This iteration of the study ran for 12 weeks from September 1 until 
November 22, 2008. Focusing on outdoor wandering of the elderly, (Lin et al., 2012) 
investigated real-time detection of pacing and lapping movements from users’ GPS 
traces. Based on the spatial wandering patterns, a data-driven method was proposed 
to examine and count turning points in any ongoing trajectory. The angular sum of 
the found turning points is chosen as a basis to determine whether a trace is lapping 
or pacing. Experimental results showed that the proposed method is workable in 
detecting lapping and pacing wandering locomotion investigated to detect 
deviations from traveling trajectories. CERTH will extend the above strategy, to be 
used in combination with activity classification and frequent destinations, in order to 
perform real-time detection of a possible LoO event. 

3.3.2.3 GPS Bearing deviation 

Following the above assumptions of optimal trajectory, and the definition of LoO 
events by (Martino-Saltzman et al., 1991) about pacing and random pattern 
wandering, CERTH explores a novel LoO detection technique to be used along the 
aforementioned ones, specifically designed to detect non-mobile LoO events. 
Assuming that an optimal route is desired, one can derive that the GPS bearing 
reading, i.e. the direction of facing of the user, has small-to-zero deviation when the 
user follows a relatively straight path to his destination. Therefore, CERTH will 
explore the properties of the bearing timeseries signal of both stationary LoO events, 
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and trajectory-varying events, in a signal-processing manner, to develop a candidate 
criterion for the detection of random-patterned Loss of Orientation and wandering 
events, synergizing with abovementioned techniques in order to provide a complete 
early warning system of LoO events. 
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