
FRAILSAFE – H2020-PHC–690140 ​D4.12 

 

Project Title: Sensing and predictive treatment of frailty and       
associated co-morbidities using advanced personalized     
models and advanced interventions 

Contract No: 690140 
Instrument: Collaborative Project 
Call identifier: H2020-PHC-2014-2015 
Topic: PHC-21-2015: Advancing active and healthy ageing with       

ICT: Early risk detection and intervention 
Start of project: 1 January 2016 
Duration: 36 months 

Deliverable No: D4.12 
 LingTester Test Results – Passive 

(off-line) mode (vers a)  

Due date of deliverable: M18 (30​th​ June 2017) 
Actual submission date: 30​th​ June 2017 
Version: 1.1 
Date​: 30​th​ June, 2017 
 
Lead Author(s): C. Tsimpouris, N. Fazakis, K. Sgarbas (UoP) 
Lead partners​: UoP 

 
 
 

  

  
- 1 - 

Ref. Ares(2017)3273573 - 29/06/2017



FRAILSAFE – H2020-PHC–690140 ​D4.12 

CHANGE HISTORY 
 
Ver

. Date Status Author (Beneficiary) Description 

0.1 01/05/2017 draft 

C. Tsimpouris (UoP), 

N. Fazakis (UoP), 

K. Sgarbas (UoP) 

Initial draft 

0.2 07/06/2017 draft 

C. Tsimpouris (UoP), 

N. Fazakis (UoP), 

K. Sgarbas (UoP) 

First draft deliverable report, 
sent for internal review 

0.3 22/06/2017 draft 

C. Tsimpouris (UoP), 

N. Fazakis (UoP), 

K. Sgarbas (UoP) 

Second draft deliverable report, 
Text updates on introduction & 
chapters 2,4,5,6 

0.4 23/06/2017 draft 

L. Bianconi (SIGLA), 

M. Toma (SIGLA) 

K. Petridis (HYPERTECH) 

Revision of the document 

1.0 29/06/2017 final 

C. Tsimpouris (UoP), 

N. Fazakis (UoP), 

K. Sgarbas (UoP) 

Final version circulated to 
partners 

1.1 30/06/2017 final 

C. Tsimpouris (UoP), 

N. Fazakis (UoP), 

K. Sgarbas (UoP) 

Minor corrections, 
accompanying files included 

 
 

  

- 2 - 



FRAILSAFE – H2020-PHC–690140 ​D4.12 

EXECUTIVE SUMMARY 
 
The LingTester Test Results (passive - offline mode) deliverable is the second deliverable of              
the Task 4.5 Processing social media which is part of the Work Package 4. In this deliverable                 
the focus shifts from technical aspects of the LingTester tool, which prototype was presented              
in D4.10, to a more scientific approach regarding the test evaluation and results of the tool.                
This is achieved by concentrating on the essential tasks of the classification process. All the               
involving tasks, even if some of them seem to be trivial, in reality are equally important. The                 
tasks are related to methodologies of collected data analysis, feature selection, classification            
and evaluation. 
 
In a more general view, LingTester is the FrailSafe language analysis tool that aims to               
process the user’s typed text and detect abnormal behaviour. At this point, the deliverable is               
in a preliminary version, but still it is able to perform classification according to levels of                
frailty.  
 
The main objective of this Work Package is to handle the collection, management and              
analysis of frailty older people data streamed through their social, behavioural and cognitive             
activities. Both offline and online methods will be developed. Moreover, the above methods             
will be applied in order to manage and analyze new data and also generate the FrailSafe                
patient models. 
 
Reader is strongly advised to read deliverable 4.10 in order to fully understand this report, as                
it is a follow up on how the prediction model has been updated. 
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1. INTRODUCTION 
As this is a preliminary report, the main focus of this deliverable is to finalize the first well                  
performing predictive model taking in account the new populated participants data. The            
evaluation of the model is also an important aspect of the report, for this reason a satisfactory                 
number of algorithms has been tested and compared. The evaluation of the test results is               
also presented and discussed on this text. 
 
The report is organized in six main chapters (excluding the auxiliary sections). The first main               
chapters attempts to briefly describe frailty and the collected project data related to the task.               
The next chapter studies the feature extraction techniques and methodologies used on            
LingTester tool. Following feature extraction, the next chapter focuses on the predictive            
model creation process. On chapter five, an introduction is given for the subject of suicidal               
tendencies detection and the methodologies followed to build the relevant model. Test and             
evaluation results are the subject of the next chapter which is numbered as section six.               
Finally, a discussion on the ethics and safety, related to the task, is made. 

 
 
2. FRAILTY 

 

2.1 General frailty description 
 
Frailty is a common clinical syndrome in older adults that carries an increased risk for poor                
health outcomes including falls, incident disability, hospitalization, and mortality [7, 8]. Frailty            
is theoretically defined as a clinically recognizable state of increased vulnerability resulting            
from aging-associated decline in reserve and function across multiple physiologic systems           
such that the ability to cope with everyday or acute stressors is comprised. In the absence of                 
a gold standard, frailty has been operationally defined by Fried et al. as meeting three out of                 
five phenotypic criteria indicating compromised energetics: low grip strength, low energy,           
slowed walking speed, low physical activity, and/or unintentional weight loss [9]. A pre-frail             
stage, in which one or two criteria are present, identifies a subset at high risk of progressing                 
to frailty. Various adaptations of Fried’s clinical phenotype have emerged in the literature,             
which were often motivated by available measures in specific studies rather than meaningful             
conceptual differences. 
 

2.2 Collected data 
 
Utilising eCRF API, we were able to retrieve all available raw data, stored by each medical                
team, containing detailed answers to the questionnaire, along with uploaded files of present             
and past text. For the purposes of our research, we retrieved only submissions with at least                
one file uploaded, and proceed to verify the uploaded content. Results were the following: 

● Greece (UoP): 126 participants 
○ 90 participants from the Start group 
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○ 36 participants from the Main group 
● Cyprus (Materia): 96 participants 

○ 55 participants from the Start group 
○ 41 participants from the Main group 

● France (INSERM): 121 participants 
○ 75 participants from the Start group 
○ 44 participants from the Main group 

 
For the aforementioned submissions, however, and after manual validation, we imported to            
our internal database (for details please read D4.10, chapter 4) only the ones that text was                
digitally available, discarding during this phase all images or PDF files containing scanned             
images. As a result, submissions imported for the next phase were the following: 

● Greece (UoP): 103  
● Cyprus (Materia): 52 patients 

 
 
 
 

3. FEATURE EXTRACTION 
 
The feature extraction task is an essential pre-classification task. The FrailSafe project            
collects a wide range of participants’ data, these data to be utilized by the candidate model                
must first be appropriately processed. Turning raw data into objects that patterns can be              
derived from is the process of creating features. A feature is simply an individual measurable               
property of a phenomenon being observed. Depending on the data source there are             
potentially dozens of different features that can be created from a single block of data. 
 
The feature extraction task starts from an initial set of measured data and builds derived               
values (features) intended to be informative and nonredundant, facilitating the subsequent           
learning and generalization steps, and in some cases leading to better human interpretations.             
Feature extraction involves reducing the amount of resources required to describe a large set              
of data. When performing analysis of complex data one of the major problems stems from               
the number of variables involved. Analysis with a large number of variables generally             
requires a large amount of memory and computation power, also it may cause a              
classification algorithm to overfit to training samples and generalize poorly to new samples.             
Feature extraction is a general term for methods of constructing combinations of the             
variables to get around these problems while still describing the data with sufficient accuracy. 
 

 
3.1 Primitive features 

 
Apart from existing features as stated in D4.10 chapter 5.1, extra ones were extracted              
programmatically for all patients with digital text from eCRF: 
 

1. Year of birth 
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2. Profession 
3. Habitation zone 
4. How many people do you follow on Twitter? 
5. How many followers you have on twitter? 
6. Family status 
7. How many friends do you have on Facebook? 
8. Do you consider yourself a familiar user of social media? 
9. Do you use Facebook? 
10. How often do you connect to the internet per week? 
11. Have you changed your security settings in social media in order to protect your              

personal data? 
 
We decided to retrieve only patient attributes that could be available directly or indirectly in               
the future through social media networks or other means to identify users’ electronic footprint.              
For some of the aforementioned attributes accessed through the questionnaire, we went            
through a primary analysis of the structured data using the statistical tool SPSS , a software               1

package used for logical batched and non-batched statistical analysis. Not all attributes were             
selected, as it is shown also in the following paragraphs, due to the fact that missing values                 
were our primary obstacle to extract valuable outcomes. 
 
Our first priority was to conduct an appropriate analysis which depends on the gathered data               
and the intended goal. Our steps: 
 

1 https://www.ibm.com/analytics/us/en/technology/spss/ 

- 10 - 



FRAILSAFE – H2020-PHC–690140 ​D4.12 

 

 

Figure 1: Steps of initial analysis 

 

Q: How often do you connect to internet per week 

Descriptive Statistics 

 N Minimum Maximum Mean Std. Deviation 
How often do you connect 
to internet per week 

31 1 7 5.06 2.394 

Valid N (listwise) 31     
     

 

31 people answered (N=31). Minimum access to the internet is 1 per week while maximum is                
7 per week. The average is Mean=5.06 and the spread out of the data is Std=2.394. While                 
this is something answered by the patient, in theory it could be derived through API by each                 
social media network. 
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Figure 2: Distribution of answers 

 

Q: How many contacts do you have on facebook 

7 people answered (N=7). Minimum number of contacts is 20 while maximum is 9999. The               
average is Mean=244.14 and the spread out of the data is Std=361.58 . 

Descriptive Statistics 

 N Minimum Maximum Mean Std. Deviation 
How many contacts do you 
have on facebook 

7 20 999 244.14 361.585 

Valid N (listwise) 7     
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 Figure 3: Distribution of answers 

 

Q: Does the number of internet connection depends on how healthy they feel (nonfrail,              
prefrail, frail). The answer at first is that there is no correlation. Though, the results are not                 
dependable due to many missing values.  

Case Processing Summary 

Tag 

Cases 
Valid Missing Total 

N Percent N Percent N Percent 
How often do you connect to 
internet per week 

frail  2 3.4% 56 96.6% 58 100.0% 

missing  2 8.3% 22 91.7% 24 100.0% 

nonfrail 18 40.9% 26 59.1% 44 100.0% 

prefrail 9 12.3% 64 87.7% 73 100.0% 

 

 

Descriptives 

Tag Statistic 
Std. 
Error 

How often do you 
connect to internet per 
week 

frail  Mean 4.50 2.500 
Median 4.50  
Std. Deviation 3.536  
Minimum 2  
Maximum 7  
Range 5  

missing  Mean 5.00 2.000 
Median 5.00  
Std. Deviation 2.828  
Minimum 3  
Maximum 7  
Range 4  

nonfrail Mean 5.11 .577 
Median 7.00  
Std. Deviation 2.447  
Minimum 1  
Maximum 7  
Range 6  

prefrail Mean 5.11 .824 
Median 6.00  
Std. Deviation 2.472  
Minimum 1  
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Maximum 7  
Range 6  

Table 1: Distribution of question “How often do you connect to internet per week” 
against frailty tag 

 

 

 

Figure 4: Distribution of answers for the question “How often do you connect to 
internet per week” per frailty tag 

Q: Women and men have similarities concerning nonfrail and prefrail situations but female 
tend to be more frail at 23.6% than men 9.8%. 
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Figure 5: Distribution of participants’ sex against frailty tag 
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 Figure 6: Distribution of social media user type against participants’ sex 

Due to missing values, as stated in the beginning of this chapter, we were unable to extract                 
more results from these questions. 
 
 

3.2 Derived Features 

3.2.1 Misspellings 
This feature is derived based on the percentage of misspellings found within a text, divided               
by all words. In order to achieve high accuracy, a known dictionary is used per language. The                 
same dictionary is used by thousands of people that utilise LibreOffice , an open office suite               2

of applications. LibreOffice is community-driven and developed software, and is a project of             
the not-for-profit organization, The Document Foundation. LibreOffice is free and open           
source software, originally based on OpenOffice.org (commonly known as OpenOffice), and           
is the most actively developed OpenOffice.org successor project. 

3.2.2 Term Frequencies 
Proceeding to more NLP specific techniques the term frequency–inverse document          
frequency (tf-idf) is used. Tf-idf is a numerical statistic that is intended to reflect how               
important a word is to a document in a corpus. It is used as a weighting factor in text mining.                    
The tf-idf value increases proportionally to the number of times a word appears in the               
document, but is offset by the frequency of the word in the corpus, which helps to adjust for                  
the fact that some words appear more frequently in general (Salton et al, 1983). However, it                
became apparent that the use of the full list of the tf-idf features, which has decreased due to                  
the stemming process, produces substantial error to the prediction model, and thus was             
removed. 
 
In order to overcome this issue, information gain (IG), also known as Mutual Information, has               
been used to extract only the terms (or small phrases) that indeed can help the prediction                
model improve in the overall accuracy. In general terms, the expected information gain is the               
change in information entropy ​H from a prior state to a state that takes some information as                 
given: 

  
 
Information gain for classification is a measure of how common a feature is in a particular                
class compared to how common it is in all other classes. A word that occurs primarily in                 
non-frail patients and rarely in frail ones is high information. That makes sense because the               
point is to use only the most informative features and ignore the rest.  
 
One of the best metrics for information gain is chi square [1, 3]. NLTK package, already used                 
for other preprocessing tasks in more than one work packages, includes this in the              
BigramAssocMeasures class in the metrics package. To use it, first we need to calculate a               
few frequencies for each word: its overall frequency and its frequency within each class. This               

2 https://www.libreoffice.org/ 
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is done with a ​FreqDist class for overall frequency of words, and a ​ConditionalFreqDist class               
where the conditions are the class labels. Once we have those numbers, we can score words                
with the ​BigramAssocMeasures.chi_sq function, then sort the words by score and take the             
top X. We then put these words into a set, and use a set membership test in our feature                   
selection function to select only those words that appear in the set. Now each text from a                 
patient is classified based on the presence of these high information words. This process,              
has been constructed within the ​compute_ig ​python function, available also for other            
tasks. An example, of this task is shown below. It can be seen, that information gain is                 
different per feature (word n our case), and thus is more than apparent that taking a small                 
specific percent of this feature set, minimises the noise included by the rest of the words. 
 

 
Figure 7: Distribution of information gain per available token 

 

3.2.3 Sentiment analysis 
Sentiment analysis is based on a overall rating sentiment of the patient’s text, trying to detect                
the polarity of the text. This feature is extracted using a dictionary and a basic algorithm                
which calculates the polarity of the text based on the sum of all polarities of words within the                  
same text. The dictionary used can be found within the ​pattern python module and is               
available for the English language. Due to missing sentiment vocabulary for other languages,             
text is automatically translated in English for this step. 

 
 

3.2.3 Readability score 
We decided that readability score may improve our prediction model, and we proceed to              
implement a series of various models that calculate readability, and see which one makes              
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the difference. All methods measure textual difficulty, which indicates how easy a text is to               
read. The following readability scores have been implemented. 
 
Flesch Reading Ease 
The Flesch Reading Ease Scale measures readability as follows: 

● 100: Very easy to read. Average sentence length is 12 words or fewer. No words of 
more than two syllables. 

● 65: Plain English. Average sentence is 15 to 20 words long. Average word has two 
syllables. 

● 30: A little hard to read. Sentences will have mostly 25 words. Two syllables usually. 
● 0: Very hard to read. Average sentence is 37 words long. Average word has more 

than two syllables. 
 
The higher the rating, the easier the text is to understand. By the very nature of technical                 
subject matter, the Flesch score is usually relatively low for technical documentation. If the              
Flesch test is used regularly, one may develop a sense of what a reasonable score is for the                  
type of documentation one is working on and aim to align with this score. The approach to                 
calculating the Flesch score is as follows: 

1. Calculate the average sentence length, L. 
2. Calculate the average number of syllables per word, N. 
3. Calculate score (between 0-100%). 

 
 
SMOG Index 
The SMOG grade (Simple Measure of Gobbledygook) is a measure of readability that             
estimates the years of education needed to understand a piece of writing. The formula for               
calculating the SMOG grade was developed by G. Harry McLaughlin as a more accurate and               
more easily calculated substitute for the Gunning fog index and published in 1969. To make               
calculating a text's readability as simple as possible an approximate formula was also given              
— count the words of three or more syllables in three 10-sentence samples, estimate the               
count's square root (from the nearest perfect square), and add 3. 
 
To calculate SMOG: 

1. Count a number of sentences (at least 30) 
2. In those sentences, count the polysyllables (words of 3 or more syllables). 
3. Calculate using 

 
 
After numerous tests, this feature seem not affect the prediction model, as it was made 
apparent that Greek language is not fully supported by the underlying NLTK functions. 
 
 
Flesch–Kincaid Grade Level 
Although this method uses the same core measures (word length and sentence length) like              
the Flesch Reading Ease, they have different weighting factors. The results of the two tests               
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correlate approximately inversely: a text with a comparatively high score on the Reading             
Ease test should have a lower score on the Grade-Level test. These readability tests are               
used extensively in the field of education. The "Flesch–Kincaid Grade Level Formula" instead             
presents a score as a U.S. grade level, making it easier for teachers, parents, librarians, and                
others to judge the readability level of various books and texts. It can also mean the number                 
of years of education generally required to understand this text, relevant when the formula              
results in a number greater than 10. The grade level is calculated with the following formula: 
 

 
 
 
Coleman–Liau index 
The Coleman–Liau index is a readability test designed by Meri Coleman and T. L. Liau to                
gauge the understandability of a text. Like the Flesch–Kincaid Grade Level, Gunning fog             
index, SMOG index, and Automated Readability Index, its output approximates the U.S.            
grade level thought necessary to comprehend the text. 
 
The Coleman–Liau index was designed to be easily calculated mechanically from samples of             
hard-copy text. Unlike syllable-based readability indices, it does not require that the character             
content of words be analyzed, only their length in characters. Therefore, it could be used in                
conjunction with theoretically simple mechanical scanners that would only need to recognize            
character, word, and sentence boundaries, removing the need for full optical character            
recognition or manual keypunching. The Coleman–Liau index is calculated with the following            
formula: 

 
 
L is the average number of letters per 100 words and S is the average number of sentences                  
per 100 words. 
 
 
Automated readability index 
The formula for calculating the automated readability index is given below: 
 

 
 
where characters is the number of letters and numbers, words is the number of spaces, and                
sentences is the number of sentences, which were counted manually by the typist when the               
above formula was developed. Non-integer scores are always rounded up to the nearest             
whole number, so a score of 10.1 or 10.6 would be converted to 11. 
 
 
Dale–Chall readability formula 
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The Dale–Chall readability formula is a readability test that provides a numeric gauge of the               
comprehension difficulty that readers come upon when reading a text. It uses a list of 3000                
words that groups of fourth-grade American students could reliably understand, considering           
any word not on that list to be difficult. The formula for calculating the raw score of the                  
Dale–Chall readability score is given below: 

 
 
 
Linsear Write 
Linsear Write is a readability metric for English text, purportedly developed for the United              
States Air Force to help them calculate the readability of their technical manuals.It was              
specifically designed to calculate the United States grade level of a text sample based on               
sentence length and the number of words used that have three or more syllables. The               
algorithm to calculate Linsear Write score includes various steps of preprocessing and            
statistical analysis of the text. 
 
 
Gunning fog index 
The Gunning fog index is calculated with the following algorithm: 

1. Determine the average sentence length. (Divide the number of words by the number 
of sentences.) 

2. Count the "complex" words: those with three or more syllables. Do not include proper 
nouns, familiar jargon, or compound words. Do not include common suffixes (such as 
-es, -ed, or -ing) as a syllable 

3. Add the average sentence length and the percentage of complex words; and 
4. Multiply the result by 0.4. 

 
The complete formula is: 

 
 
Discussion about readability scores 
All aforementioned scores are heavily used in English by teachers, writers and technicians to              
identify the difficulty of a text, manual and try to simplify it. Within the current work package,                 
however, we tried to use them towards a different direction and identify how frailty is               
connected to the readability of the expressed text, provided by a patient. This is a hypothesis                
that hasn’t been discarded yet and needs to be thoroughly tested the following months, after               
improving the aforementioned readability scores to support better the Greek language. 
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4. PREDICTION MODEL 
 

4.1 Introduction 
 
In this section of the report, will be presented a brief introduction of the major artificial                
intelligence techniques and methodologies that are used to produce predictive models.           
These methodologies can be found in the literature grouped under the term machine             
learning[10]. 
 
 

4.2 Machine Learning 

4.2.1 History 
The field inherits its methodologies from mathematics and statistics. The first real form of              
machine learning is discovered around 1950s with the very well known ‘’Turing Test’’[11],             
some of the most basic algorithms like ‘’Nearest neighbours’’, ‘’Back propagation’’ and            
‘’Support vector machines’’ are getting discovered from 1970s through 1990s. Near this time             
the machine learning approach shifts from knowledge-driven to a more data-driven approach.            
After 2000s, technological advancements in computer chips give the ability to machine            
learning algorithms to utilize parallel processing and big data. Neural networks can now be              
run in a big number of cpu cores and this new methodology advances to become the ‘’Deep                 
learning’’[12] approach. In the following years machine learning models are widely adopted in             
software programs, giving great solutions to problems in almost any real world sector.  
 
 

4.2.2 The process 
The construction of a prediction model involves a number of tasks, basically the figure below               
summarizes the whole process.  
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 Figure 8: Process for the construction of a prediction model 
 
 
The first phase to the construction of a model is the raw data collection. FrailSafe project                
involves several number of teams under the umbrellas of different work packages in order to               
collect and parse all the related project data including clinical trials, hardware sensors data              
and higher level (analyzed) data. All the collected is potential input to the LingTester              
predictive model thus it has to be analyzed by the tasks of Feature extraction and Feature                
Selection which will be presented separately in the following sections. The next step of the               
process is the classification task, in this task a big number of available classification              
algorithms is applied and tested in order to finalize the candidate model giving the best               
predictive abilities. The finalized model is afterwards ready to be applied on real world              
instances. 
 
 

4.3 WEKA Software Package 

4.2.2 Description & features 
 
WEKA[13] Software is one of the most known packages used researchers and developers, it              
provides implementations of learning algorithms that you be easily applied to any dataset. It              
also includes a variety of tools for transforming datasets, such as the algorithms for              
discretization and sampling. A standard use casio scenario includes the preprocess of a             
dataset, the feed into a learning scheme, and the analysis of the resulting classifier and its                
performance. It was worth noting that every use flow the user wants to implement can be                
achieved by simply utilizing the GUI tools that accompany weka or in more complex              
scenarios, the user can access or alter directly the implemented source code through its own               
applications. Summarizing the most important features of the software: 
 

● It is Freely available under the GNU General Public License. 
● It is Portable, since it is fully implemented in the Java programming language and              

thus runs on almost any modern computing platform. 
● It includes a comprehensive collection of data preprocessing and modeling          

techniques. 
● It is Easy to use or alter due to its graphical user interfaces and extensible libraries. 

 

4.2.2 The Explorer package 
 
The explorer package is weka’s main graphical user interface, it gives access to all its               
facilities using menu selection and form filling. It is illustrated in ​figure 9​. To begin, there are                 
six different panels, selected by the tabs at the top, corresponding to the various data mining                
tasks that weka supports. Further panels can become available by installing appropriate            
packages. 
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Figure 9: WEKA explorer package 
 
All the classification task analysis done in this and the related reports was conducted using               
mainly using the explorer package. The tab ​Preprocess ​was used to alter accordingly the              
training dataset. For the evaluation of the available attributes the selection tab was used. The               
learner algorithms that were tested, were found on the Classify tab where the evaluation              
results are also found. 
 
 

4.4 Feature extraction 
 
For the essential task of feature extraction, a python algorithm was developed. This script is               
highly complex and employs all the techniques that have already been discussed in             
deliverable 4.10. For better understanding and presentation, available features can be           
categorized by the extraction method that was used for their creation. The table below              
attempts to summarize this information. 
 

Feature Names Type - Extraction Method 

● transcript 
○ yes 
○ no 

● language 

Primitive 
Rules & filters on eCRF API data 
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○ greek 
○ greek-cypriot 
○ french 

● class 
○ nonfrail 
○ prefrail 
○ frail 

● sex 
○ male 
○ female 

 
● do_you_consider_yourself_a_familiar

_user_of_social_media 
○ beginner 
○ less-familiar 
○ very-familiar 

● family_status 
○ married-or-in-a-relationship 
○ single 
○ divorced, 
○ widow 

● habitation_zone 
○ urban 
○ semi-urban 
○ rural 

● have_you_changed_your_security_se
ttings_in_social_media_in_order_to_p
rotect_your_personal_data  

○ yes 
○ no 

● year_of_birth 
● con_per_week ​connections per week 
● twitter_follows ​number if people user is 

following on Twitter 
● twitter_followers ​number of followers on 

Twitter 
● fb_friends ​number of friends on FB 

● text_length 
● number_of_sentences 
● number_of_words 
● number_of_words_per_sentence 
● text_entropy 

Derived 
Statistical Measures 

● desc_image_ENG_sentiment 
● desc_event_ENG_sentiment 
● prev_text_ENG_sentiment 

Derived 
Sentiment Analysis 

● desc_image_misspelled 
● desc_event_misspelled 
● prev_text_misspelled 

Derived 
Percent of misspelled words based on 
known vocabulary 
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● tf-0 
● tf-1 
● ... 

Derived 
Term frequency – Inverse document 
frequency, after feature selection based on 
information gain 

● flesch_reading_ease 
● smog_index 
● flesch_kincaid_grade 
● coleman_liau_index 
● automated_readability_index 
● dale_chall_readability_score 
● difficult_words 
● linsear_write_formula 
● gunning_fog 

Derived 
Readability score 

Table 2: List of features 
 
 

4.5 Feature selection 
 
Feature selection along with feature extraction are, as stated today in the majority of              
literature, the most essential tasks for creating a well performing predictive model. The             
prediction accuracy of a trained learner is directly depended on how much informative the              
selected model features are. 
 
The feature selection process, also known as variable selection, attribute selection or            
variable subset selection, is the process of selecting a subset of relevant features (variables,              
predictors) for use in model construction. The central premise when using a feature selection              
technique is that the data contains many features that are either redundant or irrelevant, and               
can thus be removed without incurring much loss of information [14]. Redundant or irrelevant              
features are two distinct notions, since one relevant feature may be redundant in the              
presence of another relevant feature with which it is strongly correlated. A number of              
techniques have been proposed in the literature using algorithms and even classifiers for             
automating the process of feature selection. The most common algorithms are the            
exhaustive, best first [15], simulated annealing [16] and the genetic algorithm [17]. In             
practice, the task of feature selection is a highly empirical process where algorithms and              
human intelligence are combined in order to find the optimal subset of features, thus              
constructing the final feature set that will be used in the classification task. 
 
As a first phase of the feature selection process we attempt to `Rank’ the available extracted                
features. This is achieved through the use of the weka algorithm called `OneR Attribute              
Evaluator’. The algorithm utilizes the `One R’ [18] machine learning classifier. In general, the              
classifier attempts to find the best feature available on the feature space, the exact algorithm               
follows next. 
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One R Classifier 
 

Input:  
Load the complete set of features (C) 
Count the number of all features (N) 
 
Loop for N 

For each feature-class pair (P), 
     For each value of that P, make a rule: 
                    Count how often each value of target (class) appears 
          Find the most frequent class 
                     Make the rule assign that class to this value of the P 
      Calculate the total error of the rules of each P 
 

Output: 
Choose the P with the smallest total error. 

 
 
The Evaluator algorithm uses a small variation of the classifier taking in account other              
evaluation metrics than the total error, like ReliefF, GainRatio, Entropy e.t.c., though the use              
of a Ranker package. The Attribute Evaluator algorithm was run and the results obtained are               
summarized in the next table.  
 
Attribute selection output: 
 

=== Attribute Selection on all input data === 
 
Search Method: 

Attribute ranking. 
 
Attribute Evaluator (supervised, Class (nominal): 54 class): 

OneR feature evaluator. 
 

Using training data for evaluation of attributes. 
Minimum bucket size for OneR: 6 

 
Ranked attributes: 
 
58.427   14 year_of_birth 
53.371   32 desc_event_misspelled 
52.809    1 transcript 
52.247    9 text_length 
52.247   23 automated_readability_index 
51.685   11 number_of_words 
51.124   10 number_of_sentences 
50.562   13 text_entropy 
50       19 flesch_reading_ease 
50       21 flesch_kincaid_grade 
50       12 number_of_words_per_sentence 
50       31 desc_image_misspelled 
49.438   27 gunning_fog 
48.876   24 dale_chall_readability_score 
48.876   29 desc_event_ENG_sentiment 
48.315   22 coleman_liau_index 
47.191   33 prev_text_misspelled 
47.191   15 con_per_week 
46.629   26 linsear_write_formula 
46.629    7 habitation_zone 
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45.506    5 sex 
45.506    8 have_you_changed_your_security_settings_in_social_media_in_order_to_ 
               protect_your_personal_data 
44.944   28 desc_image_ENG_sentiment 
44.944   53 tf-19 
44.944   46 tf-12 
44.944    3 do_you_consider_yourself_a_familiar_user_of_social_media 
44.382   18 fb_friends 
44.382   36 tf-2 
43.82    45 tf-11 
43.82    51 tf-17 
43.82    40 tf-6 
43.82    34 tf-0 
43.82    37 tf-3 
43.258   50 tf-16 
43.258    6 family_status 
43.258   35 tf-1 
43.258    4 language 
43.258   42 tf-8 
43.258   52 tf-18 
42.697   25 difficult_words 
42.697   39 tf-5 
42.697   16 twitter_follows 
42.697   41 tf-7 
42.697   30 prev_text_ENG_sentiment 
42.697   17 twitter_followers 
42.697   43 tf-9 
42.135   38 tf-4 
42.135    2 source 
42.135   49 tf-15 
42.135   44 tf-10 
42.135   48 tf-14 
42.135   47 tf-13 
42.135   20 smog_index 
 
 
Selected attributes:  
14,32,1,9,23,11,10,13,19,21,12,31,27,24,29,22,33,15,26,7,5,8,28,53,46,3,18,36,45,51,40,34,37,50,6,35,4,42,52,
25,39,16,41,30,17,43,38,2,49,44,48,47,20 : 53 

 

 
To further enhance the feature selection task, a simple yet effective process has been              
followed. The first steps of the process involve an iteration of classifications where each              
individual feature was examined for its contribution to the accuracy of the temporary model,              
using the cross validation method [19]. After a sufficient number of iterations, the resulting              
decision tree was visualized and examined by hand in order to further optimize the resulting               
model. 
 
 Final Feature Selection Algorithm 

 
Input:  
Load the complete set of features (C) 
 
Count the number of all features (N) 
Classify with C and store the accuracy (A) 
Initialize pointer as zero (P) 
Loop for N 

Remove C[P] 
Classify with C (Ac) 
If Ac < A 
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     Restore C[P] 
 

Validate​ features by tree visualization 
 
Output: 
Subset of features (S) 

 
 
 
 
After the successful execution of the two algorithms by combining the strongest results of the               
algorithms we ended up with the following selected attributes to use for the final classification               
task. 
 

 
Figure 10: Selected attributes 

 
 

4.5 Classification 
 
This section is an attempt to describe briefly the classifier models that will be used to obtain                 
the test results in chapter 6. It will also help to understand why a classifier is better suitable                  
than another classifier for the given problem of frailty classification. 
 
The first big category of classifiers worth mentioning is the probabilistic or bayes classifiers.              
The classifiers aparting this category are based on the application of Bayes’ theorem with              
strong (naive) independence assumptions between the features. Naive Bayes[20], the most           
known classifier belonging in this category, has been studied extensively since the 1950s. It              
was introduced under a different name into the text retrieval community in the early 1960s               
and remains a popular method for text categorization, the problem of judging documents as              
belonging to one category or the other (such as spam or legitimate, sports or politics, etc.)                
with word frequencies as the features. With appropriate pre-processing, it is competitive in             
this domain with more advanced methods including support vector machines. It also finds             
application in automatic medical diagnosis. Abstractly, naive Bayes is a conditional           
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probability model: given a problem instance to be classified, represented by a vector ​x              
representing some `n’ features (independent variables), it assigns to this instance           
probabilities calculated by the formula: 

 
for each of k possible outcomes or classes C​k​. 
 
A second big category of classifiers is based on functions. The classifier family that is worth                
mentioning in this category, as it suits the problem, is Support Vector Machines[21]. SVMs              
are supervised learning models with associated learning algorithms that analyze data used            
for classification and regression analysis. Given a set of training examples, each marked as              
belonging to one or the other of two categories, an SVM training algorithm builds a model                
that assigns new examples to one category or the other, making it a non-probabilistic binary               
linear classifier. An SVM model is a representation of the examples as points in space,               
mapped so that the examples of the separate categories are divided by a clear gap that is as                  
wide as possible. New examples are then mapped into that same space and predicted to               
belong to a category based on on which side of the gap they fall. In addition to performing                  
linear classification, SVMs can efficiently perform a non-linear classification using what is            
called the kernel trick, implicitly mapping their inputs into high-dimensional feature spaces. In             
this category of classifiers the Multilayer perceptron is also considered a strong model. MLP              
is a feedforward artificial neural network model that maps sets of input data onto a set of                 
appropriate outputs. An MLP consists of multiple layers of nodes in a directed graph, with               
each layer fully connected to the next one. Except for the input nodes, each node is a neuron                  
(a processing element) with a nonlinear activation function. MLP utilizes a learning technique             
called backpropagation for training the network. 
 
The third category that will be mentioned is based on tree structures. Better known as               
Decision Trees[22], this set of classifiers mainly utilize a decision tree as a predictive model               
to go from observations about an item, represented in the nodes, to conclusions about the               
item's target value represented in the leaves. A tree can be trained by splitting the source set                 
into subsets based on an attribute value test. This process is repeated on each derived               
subset in a recursive manner called recursive partitioning. The recursion is completed when             
the subset at a node has all the same value of the target variable, or when splitting no longer                   
adds value to the predictions. This process of top-down induction of decision trees is an               
example of a greedy algorithm, and it is by far the most common strategy for learning                
decision trees from data. An example trained tree follows in the next figure, representing the               
classic loan applicant acceptance decision tree. 
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Figure 11: Example process of top-down induction of decision trees 
 
 
A number of other categories exists based on specific logical rules, e.g.            
K-Nearest-Neighbours[23], KStar[24] and Locally weighted learning (LWL), or based on more           
complex combinations of the primitive models e.g. RotationForest[25], LogitBoost and          
utilization of techniques like bagging, voting and stacking. The number of supervised            
classifiers available nowadays has increased a lot, despite this section has shown the most              
common models, it does not intend to fully map the subject, instead it gives a brief                
understanding of the models deployed on the next chapters. 
 
 
 
 

5. SUICIDAL TENDENCIES DETECTION 
 

5.1 Introduction 
 
The study of suicide risk is complex. Suicide is a medical disaster, but occurs at a relatively                 
low frequency. The extensive body of suicide and self harm risk research has identified many               
risk factors, among them: diagnosed mental disorders, substance abuse, and a history of             
prior suicide attempts. However, much of this research has been based on retrospective             
study of suicide attempters and completers. The rarity of suicidal behavior limits the             
specificity of predicting future suicidal behavior based on relatively common risk factors. A             
recent survey of literature on screening tools to predict suicide attempts and death by suicide               
concluded that current evidence is insufficient to support reliance on screening tools based             
on presence or absence of risk factors in clinical practice [2], and so, the current standard of                 
care for the at-risk patient remains in the domain of a skilled clinical assessment. 
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5.2 State of the art 
 
Fine-grained automatic emotion detection can benefit from from classifier optimization and a            
combined lexico-semantic feature representation can achieve scores up to 68.86% F-score           
[4]. Corpus for model construction and prediction has been a note corpus of positive only               
data, annotated with fine-grained emotions, released in the framework of the 2011 i2b2 NLP              
Challenge on emotion classification in suicide notes [5], allowing research on which emotions             
might be indicative of suicidal behavior, and how they can be found automatically. However,              
this dataset is no longer available. Also, vocabulary based methodology, manually annotated            
on Twitter posts and then classification using various classifier could not produce more than              
64% accuracy [6]. 
 
 

5.3 Database construction 
 
According to the predefined work packages, no information could be available to identify             
suicidal patients, so a different approach was selected to create our dataset. We identified              
the Goodreads web page as a potential source for our scope. Among other things, this web                3

page provides famous quotes from known books, which have been manually saved by the              
Goodreads community. This manual process also forces each user to tag the quote with at               
least one keyword, and therefore various categories have appeared. A crawler for this             
purpose was constructed to identify and download all quotes set by the researchers, split in               
two main groups: 

● suicide: quotes identified by the following keywords 
○ suicide, 
○ suicide-note, 
○ suicide-attempt and 
○ suicidal-thoughts 

● non-suicide: quotes identified by the following keywords 
○ humor and 
○ happy 

 
To avoid an unbalanced dataset, the second category was filled randomly till we had the               
same amount of quotes in both categories. After the data collection, each group has 3184               
instances. 
 
 

5.4 Feature extraction 
 
Feature extraction was based on the same methodology as stated before, for the frailty              
prediction model. The derived feature space used for suicidal tendencies detection was            
intentionally kept familiar with the frailty feature space for consistency reasons. In contrast             
with the frailty detection process, the current task lacks the eCRF API data. Below, follows a                
brief description of the feature space in ​table 3​. 

3 https://www.goodreads.com/ 
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Feature Names Feature Description 

● class 
○ suicide 
○ non-suicide 

goodreads crawler labels 
(see Annex 1 for details) 

● text_length 
● number_of_sentences 
● number_of_words 
● number_of_words_per_sentence 
● text_entropy 

Statistical Measures 

● sentiment Sentiment Analysis of text data 

● misspelled Percent of misspelled words based on 
known vocabulary 

● tf-0 
● tf-1 
● ... 

Term frequency – Inverse document 
frequency, after feature selection based on 
information gain 

● flesch_reading_ease 
● smog_index 
● flesch_kincaid_grade 
● coleman_liau_index 
● automated_readability_index 
● dale_chall_readability_score 
● difficult_words 
● linsear_write_formula 
● gunning_fog 

Readability score 

Table 3: List of features 
 
 

5.5 Information gain and Feature selection 
 
Also, feature selection and information gain was implemented to lower the dimensionality of             
features, while also removing excessive noise from the Tf-IDF feature extraction. 
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Figure 12: Distribution of information gain per available feature for the suicidal prediction             
model, based on Goodreads manually saved quotes. 
 
 

5.6  Suicide tendency prediction 
 
In order to detect suicidal signs in written text, a series of tests on classification models had                 
to be run. This section, has to be mentioned, that is a work in progress and will be finalized in                    
the final report.  
 
The classifiers deployed where the very common in text classification `Naive Bayes’, the             
classic `Decision Trees’ implementation (J48) and the more complex trees model known as             
`Rotation Forest’. The tests ran on the extracted feature space mentioned in ​section 5.4              
using 10 - cross validation on the training dataset constructed as explained in the previous               
sections.  
 
The results of the experiment are presented in detail below. The following table summarizes              
the accuracies of the models along with the figure, giving a better visual comparison. Next,               
the detailed statistical measures of best performing model are shown. 
 

Classifier Accuracy % 

NaiveBayes 68.35 

J48 69.26 

RotationForest 71.04 

Table 4: Suicide tendency prediction accuracy per classifier  
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Figure 13: Suicide tendency prediction accuracy per classifier  

 
 

=== Stratified cross-validation === 
=== Summary === 
 
Correctly Classified Instances        4526               71.0407 % 
Incorrectly Classified Instances      1845               28.9593 % 
Kappa statistic                          0.4208 
Mean absolute error                      0.3698 
Root mean squared error                  0.4306 
Relative absolute error                 73.9596 % 
Root relative squared error             86.1218 % 
Total Number of Instances             6371  
 
=== Detailed Accuracy By Class === 
 
               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 
                 0.61      0.19       0.763     0.61      0.678      0.784    suicide 
                 0.81      0.39       0.675     0.81      0.737      0.784    non-suicide 
Weighted Avg.    0.71      0.29       0.719     0.71      0.707      0.784 
 
=== Confusion Matrix === 
 
    a    b   <-- classified as 
 1944 1241 |    a = suicide 
  604 2582 |    b = non-suicide 

 

Figure 14: detailed statistical measures of Rotation Forest performing model 
 
The Rotation Forest model seems to be superior according to the accuracy comparison of              
the models. Thus, the relating subject is very sensitive and important, decision to alert the               
involved people can not be made only by judging the accuracy metric. As this is a preliminary                 
report, more work will be done in this direction to ensure the most appropriate metrics are                
used to give a more clear picture of the situation. Some of them involve, the Distribution of                 
probabilities for the classified instance, false positives, false negatives and generally           
precision and recall analysis. 
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6. TEST RESULTS 
 

6.1 Introduction 
 
The major subject of this report is the test results of the predictive model. In reality,                
everything done in the task is heavily tied with the performance increasement of the final               
model. As has been emphasized in ​chapter 4​, the performance of a model is equally               
influenced by all the previous tasks of the classification process. The parts of feature              
extraction and feature selection are considered as highly important factors of the final             
predictive accuracy and require fairly more expensive resources like human expertise. As the             
above factors are not a hundred percent controlled by this task, a very strong and extensive                
testing process has to be done in order to select the final classification model and ensure the                 
best possible prediction accuracy. 
 
This chapter presents the evaluation process followed to obtain the test results, the             
comparison of the various models, the parameters of the selected model and the statistics of               
the final model. Finally, this chapter ends with a brief discussion of the test results, as this is                  
a preliminary report and the model is expected to change, and also a few words about the                 
future steps of development. 
 
 

6.2 Evaluation 
 
Machine learning offers a wide range of algorithms that can fit the data and build a predictive                 
model. In order to test the possible model performances and select the most suitable for the                
case, an extensive experiment was organized. Totally, seventeen of the most widely used             
classifiers were selected from six different algorithm families. The measured metric was that             
of classification accuracy.  
 
The evaluation method that was used is the classic method of Cross Validation[26]. In              
general, cross validation is a model validation technique for assessing how the results of a               
statistical analysis will generalize to an independent data set. One round of cross-validation             
involves partitioning a sample of data into complementary subsets, performing the analysis            
on one subset (called the training set), and validating the analysis on the other subset (called                
the validation set or testing set). To reduce variability, multiple rounds of cross-validation are              
performed using different partitions, and the validation results are averaged over the rounds.             
One of the main reasons for using cross-validation instead of using the conventional             
validation (e.g. partitioning the data set into two sets of 70% for training and 30% for test) is                  
that there is not enough data available to partition it into separate training and test sets                
without losing significant modelling or testing capability. In summary, cross-validation          
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combines (averages) measures of fit (prediction error) to derive a more accurate estimate of              
model prediction performance. 
 
The table that follows presents the test results, measured in accuracy percent, for the              
extensive tested scenario, using the 10 fold cross validation method. 
 

Classifier Accuracy % 

NaiveBayes 54.49 

SVM 52.24 

Logistic Regression 60.67 

MultilayerPerceptron 59.55 

SMO 57.86 

IBk 56.17 

KStar 52.80 

LWL 57.86 

RotationForest 58.98 

OneR 52.24 

ZeroR 42.13 

DecisionStump 51.12 

J48 64.04 

LMT 60.11 

RandomForest 56.74 

RandomTree 51.12 

REPTree 47.19 

Table 5: Frailty prediction results per prediction model 
 
Most of the tested models seem to be performing moderately with an average accuracy of               
55.01% with a standard deviation of 5.44%. The outcome was very logical as frailty              
prediction is a very difficult and sensitive problem and is highly correlated to the constructed               
dataset.  
 
The exception that one can immediately spot on the table is the J48 model which is the                 
implementation of the classic Decision Trees classifier. This phenomenally simple algorithm           
achieved to perform almost 10% above the average accuracy scoring a 64.04%. Below are              
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presented the figures of accuracy distribution and the accuracy visualization for better            
understanding of the results. 
 

 
Figure 15: Accuracy distribution 
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Figure 16: Frailty prediction results per prediction model 
 
 
 

6.4 Final model parameters 
 
The final classifier that was selected to be used in the LingTester tool is the very well known                  
Decision Tree algorithm implementation C4.5, first proposed by Ross Quinlan as an            
extension of the ID3 algorithm. In the tool, an open source java version of this algorithm has                 
been used called J48. This version is capable of being tuned by a series of input parameters,                 
mainly giving control of the final structure of the produced tree (nodes, leaves, height). The               
available parameters have been gathered along with their description in the next table.  
 

Parameter Name Description 

Binary splits Whether to use binary splits on nominal attributes when building the 
trees. 

Confidence factor The confidence factor used for pruning (smaller values incur more 
pruning). 

MinNumObj The minimum number of instances per leaf. 

Reduced Error 
Pruning 

Whether reduced-error pruning is used instead of C.4.5 pruning. 
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Unpruned Whether pruning is performed. 

Use Laplace Whether counts at leaves are smoothed based on Laplace. 

Table 6: Explanation of parameters used 
 
The exact values that were used to produce the LingTester tool predictive tree are presented               
on the table below. The process of model parameter optimization is a highly empirical              
process, although there have been some efforts in the field, for example Auto-Weka. As this               
is still a preliminary version, the empirical approach of trial and error was used to select the                 
best performing parameter values. A small performance gain may still be possible by utilizing              
automated parameter exploration techniques and is thus left for future examination. 
 

Parameter Name Parameter Value 

Binary splits False 

Confidence factor 0.25 

MinNumObj 2 

Reduced Error Pruning False 

Unpruned True 

Use Laplace False 

Table 7: Actual parameters used for the prediction model 
 
 

6.5 Final model results 

6.5.1 Three class classification results 
 
The final Decision Tree model that is embedded to the LingTester tool is capable of               
predicting the three possible frailty conditions (nonfrail, prefrail, frail) by an average prediction             
accuracy of 64.04% for out of sample instances. A statistical analysis of the model has been                
conducted and the most important metrics are presented below.  
 

=== Stratified cross-validation === 
=== Summary === 
 
Correctly Classified Instances         114               64.0449 % 
Incorrectly Classified Instances        64               35.9551 % 
Kappa statistic                          0.4465 
Mean absolute error                      0.3041 
Root mean squared error                  0.4257 
Relative absolute error                 69.881  % 
Root relative squared error             91.2654 % 
Total Number of Instances              178  
Ignored Class Unknown Instances                  2  
 
=== Detailed Accuracy By Class === 
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               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 
                 0.689     0.083      0.738     0.689     0.713      0.779    nonfrail 
                 0.64      0.291      0.615     0.64      0.627      0.719    prefrail 
                 0.603     0.192      0.603     0.603     0.603      0.735    frail 
Weighted Avg.    0.64      0.206      0.643     0.64      0.641      0.739 
 
=== Confusion Matrix === 
 
  a  b  c   <-- classified as 
 31 10  4 |  a = nonfrail 
  8 48 19 |  b = prefrail 
  3 20 35 |  c = frail 

Figure 17: Decision tree model results 
 
At the end of the results above, the confusion matrix for the corresponding model is also                
shown. From the confusion matrix one can extract useful evaluation metrics like false             
positives, negatives and generally calculate indicators known as precision & recall. Further            
study of these metrics is left for future study on the final version of the report. 
 
The final extracted tree structure of the trained model is also presented in the next figure. 
 

 
Figure 18: Decision tree visualization 

 
 

6.5.2 A simplification: Binary classification approach 
 
As the main model involves the three frailty classes, was expected to have a higher decision                
complexity and proportionally lower accuracy. Apart from further future dataset population           
and attempt was made to decrease the decision complexity of the frailty prediction problem.              
A common technique employed is the reduction of the number of classes by combining or               
removing similar classes. In this section and clearly for testing and evaluation purposes, a              
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similar strategy was employed for the dataset. In more detail, the Prefrail class was              
combined with that of Frail class, thus the instances that were labeled as prefrail were               
renamed as frail and the training and evaluation process was again deployed. The results              
were stunning, the prediction accuracy was significantly increased to 84.83%. The difference            
was almost 20% more than the three class classification problem. The results were expected              
as the decision complexity regarding the frailty status of a participant in evaluation was              
significantly lower. Below are shown the exact statistical results and the corresponding            
confusion matrix. 
 

=== Stratified cross-validation === 
=== Summary === 
 
Correctly Classified Instances         151               84.8315 % 
Incorrectly Classified Instances        27               15.1685 % 
Kappa statistic                          0.57  
Mean absolute error                      0.2242 
Root mean squared error                  0.3701 
Relative absolute error                 59.0842 % 
Root relative squared error             85.1245 % 
Total Number of Instances              178  
Ignored Class Unknown Instances                  2  
 
=== Detailed Accuracy By Class === 
 
               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 
                 0.6       0.068      0.75      0.6       0.667      0.758    nonfrail 
                 0.932     0.4        0.873     0.932     0.902      0.745    frail 
Weighted Avg.    0.848     0.316      0.842     0.848     0.842      0.749 
 
=== Confusion Matrix === 
 
   a   b   <-- classified as 
  27  18 |   a = nonfrail 
   9 124 |   b = frail 

Figure 19: Results of the final prediction model 
 
It is worth to mention that even when the experiment was reconducted and the class               
reduction was now done by simply removing the instances labeled as prefrail, the prediction              
accuracy still remained at the same levels (~81.55%). 
 
 

6.6 Discussion of the results 
 
This chapter was devoted to the evaluation process and the extraction of the according              
evaluation metrics. A large experiment was organized and the seventeen of the most known              
models were trained and evaluated. 
 
The final model that was selected to be embedded to the LingTester tool, was a Decision                
Tree implementation (C4.5) due its accuracy superiority, in comparison with the other            
evaluated algorithms, but also due its simplicity and its fundamental property of tree             
structure. The last property is considered highly important for a medical application such             
frailty prediction. This is because the exact decision logic can be easily visualized giving the               
human evaluator(doctors-researchers) to observe and judge its behavior and even extract           
useful feature relations between the instance feature values. 
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The accuracy for the selected classifier was achieved after the parameter optimization            
process and was around 64% for three class classification problem. Further increase of the              
prediction performance is possible to be achieved either by the future population of             
participants data or by further investigation of the model parameters and the deployment of              
ensemble models.  
 
Binary classification is also an approach that was evaluated and seems tο perform relatively              
good mainly to the reduction of decision complexity. Further exploration of the approach may              
reveal useful relations between the dataset features and parameters. 

 
 
6.7 Next steps 

 
On weeks that follow, it has been decided to keep working on the following issues, with in                 
mind to improve accuracy of the prediction model, and also make it more rigid. 
 
Language per text, currently, is not verified but assumed to be greek, greek-cypriot or french               
through the extraction process. For example, it is taken for granted that patients from UoP               
partner speak and write in Greek while patients from INSERM (France) speak and write in               
French. We focus on an automatic detection system, which can successfully identify given             
text among a predefined set of languages. This step, while may impose significant errors, will               
make the model prediction model more rigid for cases where we are unable to identify given                
text, or in case language should not be taken for granted, for example a greek patient may                 
say something in English while posting on Facebook. 
 
Another step to improve the accuracy of the prediction model, will be firstly to improve the                
methodology of feature extraction, which among other steps, contains the calculation of the             
readability score. Throughout the testing phase, we identified a series of steps that can              
improve readability scores. In specific, we can improve the syllabification rules of the Greek              
language implemented within the NLTK module, that is widely used for our feature extraction              
step. 
 
Furthermore, results were not satisfactory using POS information, and thus were removed as             
accuracy dropped when including these features. However, it should be stressed that extra             
steps will be carried out to identify a way to circumvent these problems. 
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7. ETHICS AND SAFETY 
 
 
Throughout the construction of the offline Lingtester tool, legal issues were kept in mind so               
as to protect sensitive information.  
 
First of all, as described before data anonymization is used, which confirms that the              
participants of the clinical trials can not be linked to their own data. The database where the                 
collected data is stored, is always kept of offline, this fact ensures the impossibility of               
unauthorised access of the data. Furthermore, the LingTester tool in order to make its              
predictions uses an exported and pre-computed(at training phase) model thus securing the            
independence of participants’ training data and the tool which can be deployed on less              
secure environments. 
 
Moreover, the data persistence and analysis will comply with the data protection guidelines             
reported in deliverable "D9.9: Ethics, Safety and Health Barriers" (Section 6) with the aim of,               
at same time, keeping the maximum level of security and privacy of the data and allowing the                 
successful performance of the other tasks of the project. Moreover, data will be obtained in               
accordance to the local ethics requirements. Any information regarding the participants will            
be treated as sensitive personal data (as defined in deliverable D9.9) and kept strictly private.               
Future provided data will be thoroughly checked by semi-automatic algorithms in order to             
anonymize any personal identifiers like full names, dates, emails, communication cellphone           
or landline numbers – hence falling outside the scope of legislation concerning personal data. 
 
Finally, the participants are already, fully informed and agree to share their clinical data with               
the FrailSafe program. In any time during the program they retain the right to quit the data                 
collection process according to their will. 
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9. FILE STRUCTURE 

 
● Folder: Deliverable 

○ File: fraildata_v11a_tfidf_ngram1_1.arff 
■ Extracted dataset 

○ File: fraildata_feature_selected.arff 
■ Feature selected dataset 

○ File: fraildata_feature_selected_binary.arff 
■ Binary feature selected dataset 

○ File: fraildata_feature_selected_binary_removed_instances.arff 
■ Binary via instance removement feature selected dataset 

○ File: suicide_v1c_withtfidf_30_ngram1.arff 
■ Suicide constructed dataset 

○ File: final_model.model 
■ Built frailty predictive model 

○ File: suicide_model.model 
■ Built suicide predictive model 

○ File: offline-parser.py 
■ Python script for feature extraction - creation & dataset creation 

○ File: goodreads-downloader.py 
■ Python crawler script for the suicidal dataset 
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10. ANNEXES 
 

10.1 Goodreads crawler 
File: goodreads-downloader.py 
 
# -*- coding: utf-8 -*- 
""" 
@author: Charalampos 
""" 
 
import​ ​math​, ​numpy​, ​pickle​, ​nltk 
import​ ​matplotlib.pyplot​ ​as​ ​plt 
 
import​ ​urllib2 
import​ ​pickle 
import​ ​re 
op = ​__import__ ​( ​"offline-parser" ​) 
from​ ​textstat.textstat​ ​import​ textstat 
 
main_page =  
'http://www.goodreads.com/quotes' 
history_file =  
'goodreads-downloader.history.pickle' 
quotes_file =  
'goodreads-downloader.quotes.csv' 
 
default_suicide_groups = [ ​'suicide' ​,   
'sadness' ​, ​'suicide-note' ​,  
'suicide-attempt' ​, ​'suicidal-thoughts' ​] 
default_non_suicide_groups = [ ​'humor' ​,   
'happy' ​] 
 
def ​sortedDictValues​(adict, reverse_order   
= ​True ​): 
    ​""" 

Taksinomisi leksikou, simfwna me to      
"value" 
 
http://wiki.python.org/moin/HowTo/Sorting/ 
    """ 
    ret = [] 
    ​for​ k ​in​ adict: 
        ret.append( (k, adict[k]) ) 
  

ret = ​sorted ​(ret, key= ​lambda tdf:      
tdf[ ​1​], reverse = reverse_order) 
 
    ​return​ [page[ ​0​] ​for​ page ​in​ ret] 
 
def​ ​historySave​(history_to_save): 
    f = ​open ​(history_file, ​'w' ​) 
    pickle.dump(history_to_save, f) 
    f.close() 
 
def​ ​historyLoad​(): 
    history_to_load = {} 
    ​try​: 
        f = ​open ​(history_file, ​'r' ​) 
        history_to_load = pickle.load(f) 
        f.close() 
    ​except​: 
        ​pass 
  

    ​return​ history_to_load 
 
def​ ​quotesSave​(quotes_to_save): 
    f = ​open ​(quotes_file, ​'w' ​) 
    ​for​ k ​in​ quotes_to_save: 

f.write( ​" ​%s ​\t​%s ​\n​" %   
( ​'|' ​.join(quotes_to_save[k][ ​'t' ​]), k)) 
    f.close() 
 
def​ ​quotesLoad​(): 
    quotes_to_load = {} 
    ​try​: 
        f = ​open ​(quotes_file, ​'r' ​) 
        lines = f.readlines() 
        f.close() 
        ​for​ k ​in​ lines: 
            k = k.strip() 
            qtags, qtext = k.split( ​" ​\t​" ​) 
            qtags = qtags.strip() 
            qtext = qtext.strip() 
            ​if​ qtags == qtext: 
                ​continue 
  

quotes_to_load[qtext] = { ​'q' ​:    
qtext, ​'t' ​: qtags.split( ​'|' ​)} 
    ​except​: 
        ​pass 
  
    ​return​ quotes_to_load 
 
def​ ​quotesByTag​(): 
    ​print​ ​'Loading..' ​, 
    quotes = quotesLoad() 
    ​print​ ​'Done!' 
  
    ​print​ ​'Transforming..' ​, 
    quotes_to_return = {} 
    res = ​len ​(quotes) / ​10 
    ​for​ q ​in​ quotes: 
        res -= ​1 
        ​if​ res < ​0​: 
            res = ​len ​(quotes) / ​10 
            ​print​ ​'.' ​, 
  
        quote = quotes[q] 
        ​for​ t ​in​ quote[ ​'t' ​]: 
            ​if​ ​not​ t ​in​ quotes_to_return: 
                quotes_to_return[t] = {} 
  
 
quotes_to_return[t][quote[ ​'q' ​]] = quote 
    ​print​ ​'Done!' 
  
    ​return​ quotes_to_return 
 
def​ ​getQuotes​(tag, page, history): 
    url_to_fetch = main_page 
    ​if​ tag != ​'' ​: 
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        url_to_fetch += ​'/tag/' ​ + tag 
  
    ​if​ page > ​1​: 

url_to_fetch += ​'?page=' +     
str ​(page) 
  
    ​if​ tag == ​'' ​: 

​print ​"Fetching all quotes, page      
%d ​" ​ % page, 
    ​else​: 

​print ​"Fetching quotes for ​%s ​,      
page ​%d ​" ​ % (tag, page), 
  
    ​try​: 

request =   
urllib2.Request(url_to_fetch) 

contents =   
urllib2.urlopen(request).read() 
    ​except​: 
        ​print​ ​'..Error!' 
        ​return​ ​None 
  

contents = contents.replace( ​'&ldquo;' ​,    
'' ​) 

contents = contents.replace( ​'&rdquo;' ​,    
'' ​) 

contents = contents.replace( ​'&#8213;' ​,    
'' ​) 
    contents = contents.replace( ​" ​\n​" ​, ​'' ​) 
  
    new_tags = ​0 

​for m ​in    
re.finditer( ​'\/quotes\/tag\/([a-z\-]+)' ​, 
contents): 
        tag = m.group( ​1​) 
        ​if​ ​not​ tag ​in​ history: 
            history[tag] = ​0 
            new_tags += ​1 
  
    ​if​ new_tags > ​0​: 
        ​print​ ​'.. ​%d ​ new tags' ​ % new_tags, 
        historySave(history) 
  

contents = contents.replace( ​'<div    
class="quote mediumText ">' ​, ​"<div    
class='quote'>" ​) 

​# contents =    
contents.replace('quoteText">', 
"quoteText'>") 
 

text_quotes = contents.split( ​"<div    
class='quote'>" ​) 
    ​# Useless 
    ​del​ text_quotes[ ​0​] 
  
    quotes_to_return = {} 
    ​for​ q ​in​ text_quotes: 

m = re.search( ​'quoteText">(.*?)<' ​,    
q) 

qtext =   
m.group( ​1​).strip().replace( ​" ​\t​" ​, ​'' ​) 
        ​if​ qtext == ​'' ​: 
            ​continue 
 
        ctags = [] 

​for m ​in    
re.finditer( ​'\/quotes\/tag\/([a-z\-]+)' ​, 

q): 
​if m.group( ​1​).strip() == ​'' ​or      

m.group( ​1​).strip() == qtext: 
                ​continue 
  
            ctags.append(m.group( ​1​)) 
  
        ​if​ ​len ​(ctags) <= ​0​: 
            ​continue  
  

quotes_to_return[qtext] = { ​'q' ​:    
qtext, ​'t' ​: ctags} 
  

​print ​' ​%d quotes' %     
len ​(quotes_to_return), 
    ​print​ ​'..Done!' 
  
    ​return​ quotes_to_return 
    ​# print quotes_to_return 
    ​# print contents 
 
def ​getTagsByGroup​(includeGroups,  
excludeGroups = [], quotes_by_tag = ​None ​,      
no_more_than = ​0​): 
    ​if​ quotes_by_tag ​is​ ​None ​: 
        quotes_by_tag = quotesByTag() 
  
    excluded = {} 
    ​for​ g ​in​ excludeGroups: 
        ​for​ q ​in​ quotes_by_tag[g]: 
            quote = quotes_by_tag[g][q] 
            excluded[ quote[ ​'q' ​] ] = ​True 
  
    selected = {} 
    ​for​ g ​in​ includeGroups: 
        ​for​ q ​in​ quotes_by_tag[g]: 
            quote = quotes_by_tag[g][q] 
            ​if​ quote[ ​'q' ​] ​in​ excluded: 
                ​continue 
  
            selected[ quote[ ​'q' ​] ] = quote 

​if no_more_than > ​0 ​and      
len ​(selected) >= no_more_than: 
                ​break 
  
    ​return​ selected 
 
def ​getSeperateGroups​(suicideGroups,  
nonSuicideGroups, quotes_by_tag = ​None ​): 
    ​if​ quotes_by_tag ​is​ ​None ​: 
        quotes_by_tag = quotesByTag() 
  

group1 = getTagsByGroup(suicideGroups,    
nonSuicideGroups, quotes_by_tag) 

group2 =   
getTagsByGroup(nonSuicideGroups, 
suicideGroups, quotes_by_tag, ​len ​(group1)) 
  

​print ​"suicide group: ​%d ​" %      
len ​(group1) 

​print ​"NON suicide group: ​%d ​" %       
len ​(group2) 
    ​return​ group1, group2 
 
def​ ​startWorking​(): 
    quotes = quotesLoad() 
    history = historyLoad() 
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    ​if​ ​not​ ​'' ​ ​in​ history: 
        history[ ​'' ​] = ​0 
        historySave(history) 
  

​# for tag in ['suicide', 'sadness',       
'suffering', 'suicide-note',  
'failed-attempt', 'suicide-attempt',  
'suicidal-thoughts']: 
    ​#     if not tag in history: 
    ​#         history[tag] = 0 
  

​print ​" ​%d tags in my history" %        
len ​(history) 

​print ​" ​%d quotes already" %      
len ​(quotes) 
  
    added = ​True 
    ​while​ added: 
        added = ​False 
        ​for​ tag ​in​ history.keys(): 
            ​if​ history[tag] >= ​100​: 
                ​continue 
  

​print ​'Tag " ​%s ​", page ​%d ​' %       
(tag, history[tag]) 
            lenbefore = ​len ​(quotes) 
            ​while​ history[tag] < ​100​: 
                history[tag] += ​1 

new_quotes =   
getQuotes(tag, history[tag], history) 
                ​if​ ​len ​(new_quotes) <= ​0​: 
                    history[tag] = ​100 
  
                quotes.update(new_quotes) 
  
            lenafter = ​len ​(quotes) 
  
            ​if​ lenafter > lenbefore: 
                added = ​True 

​print ​'Saving ​%d new     
quotes' ​ % (lenafter - lenbefore), 
                quotesSave(quotes) 
                ​print​ ​'..Done' 
            historySave(history) 
  
    ​print​ ​"Update ended" 
 
def ​create_arff​(relation = ​'suicide' ​,    
includeTFIDF = ​True ​, group_suicide = ​None ​,      
group_non_suicide = ​None ​, TFIDF_thres =     
20​): 

​"""Create arff for WEKA with all       
features availiable 
    """ 
    out = [] 
    out.append( ​'@RELATION ​%s ​' ​ % relation) 
    out.append( ​'' ​) 
  
    other_attributes = [] 
 
other_attributes.append( ​'get_feature_lengt
h' ​) 
 
other_attributes.append( ​'get_feature_numbe
r_of_sentences' ​) 
 
other_attributes.append( ​'get_feature_word_

count' ​) 
 
other_attributes.append( ​'get_feature_words
_per_sentence' ​) 
 
other_attributes.append( ​'get_feature_text_
shannon_entropy' ​) 
 
    ​for​ attr ​in​ other_attributes: 
        call = ​getattr ​(op, attr) 

out.append( ​'@ATTRIBUTE ​%s ​%s ​' %     
(call( ​'' ​, ​'title' ​), call( ​'' ​, ​'type' ​))) 
  
    read_scores = [] 
 
read_scores.append( ​'flesch_reading_ease' ​) 
    read_scores.append( ​'smog_index' ​) 
 
read_scores.append( ​'flesch_kincaid_grade' ​) 
 
read_scores.append( ​'coleman_liau_index' ​) 
 
read_scores.append( ​'automated_readability_
index' ​) 
 
read_scores.append( ​'dale_chall_readability
_score' ​) 
    read_scores.append( ​'difficult_words' ​) 
 
read_scores.append( ​'linsear_write_formula'
) 
    read_scores.append( ​'gunning_fog' ​) 
    ​for​ attr ​in​ read_scores: 

out.append( ​'@ATTRIBUTE ​%s ​%s ​' %     
(attr, ​'real' ​)) 
  

out.append( ​'@ATTRIBUTE ​%s ​%s ​' %     
( ​'sentiment' ​, ​'real' ​)) 

out.append( ​'@ATTRIBUTE ​%s ​%s ​' %     
( ​'misspelled' ​, ​'real' ​)) 
 
    ​if​ group_suicide ​is​ ​None ​: 

group_suicide =   
default_suicide_groups 
    ​if​ group_non_suicide ​is​ ​None ​: 

group_non_suicide =   
default_non_suicide_groups 

results =   
getSeperateGroups(group_suicide, 
group_non_suicide) 
    group_suicide_quotes = results[ ​0​] 
    group_non_suicide_quotes = results[ ​1​] 
 
    filename = ​'ARFFS/ ​%s ​.arff' ​ % relation 
  
  
    texts = [] 
    ​if​ includeTFIDF: 

s, score_words =    
compute_ig({ ​'suicide' ​: 
group_suicide_quotes, ​'non-suicide' ​:  
group_non_suicide_quotes}) 
  
        mywords = s[:TFIDF_thres] 
  
        ​for​ q ​in​ group_suicide_quotes: 

temptext =   
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group_suicide_quotes[q][ ​'q' ​] 
            temptext_out = [] 

​for word ​in temptext.split( ​'     
' ​): 
                word = word.lower() 

word = re.sub( ​r'([^a-z    
])' ​, ​'' ​, word) 

​if word != ​'' ​and word ​in        
mywords: 
 
temptext_out.append(word) 
  

texts.append( ​'  
' ​.join(temptext_out)) 
 
        ​for​ q ​in​ group_non_suicide_quotes: 

temptext =   
group_non_suicide_quotes[q][ ​'q' ​] 
            temptext_out = [] 

​for word ​in temptext.split( ​'     
' ​): 
                word = word.lower() 

word = re.sub( ​r'([^a-z    
])' ​, ​'' ​, word) 

​if word != ​'' ​and word ​in        
mywords: 
 
temptext_out.append(word) 
  

texts.append( ​'  
' ​.join(temptext_out)) 
  
        ​# TF-IDF on stemmed text 

tf =   
op.TfidfVectorizer(analyzer= ​'word' ​, 
ngram_range=( ​1​, ​1​), min_df = ​0​) 

tfidf_matrix =   
tf.fit_transform(texts) 

feature_names =   
tf.get_feature_names() 

​print ​"TF-IDF ​%d features" %      
len ​(feature_names) 
  

fp = ​open ​(filename + ​'.tf.pickle' ​,      
'w' ​) 

pickle.dump({ ​'tf' ​: tf,   
'tfidf_matrix' ​: tfidf_matrix,  
'feature_names' ​: feature_names, ​'s' ​: s,    
'score_words' ​: score_words, ​'mywords' ​:   
mywords}, fp) 
        fp.close() 
 

​for i ​in    
range ​( ​len ​(feature_names)): 

out.append( ​'@ATTRIBUTE tf- ​%d   
real ​%% ​ ​%s ​' ​ % (i, feature_names[i])) 
  

​# The following creates an "array       
to big" error 
        ​# dense = tfidf_matrix.todense() 
 
    ​# Class always must go last 

out.append( ​'@ATTRIBUTE ​%s { ​%s ​}' %     
( ​'class' ​, ​',' ​.join([ ​'suicide' ​,  
'non-suicide' ​]))) 
 
    out.append( ​'' ​) 

    out.append( ​'@DATA' ​) 
    out.append( ​'' ​) 
  
    ​print​ ​'Creating ARFF rows' ​, 
    f = ​open ​(filename, ​'w' ​) 
    f.write( ​" ​\n​" ​.join(out).encode( ​'utf8' ​))  
    f.write( ​" ​\n​" ​) 
 

all_quotes = ​len ​(group_suicide_quotes)    
+ ​len ​(group_non_suicide) 
    rows_so_far = all_quotes / ​10 
    i = ​0 
    ​for​ tag ​in​ [ ​'suicide' ​, ​'non-suicide' ​]: 
        ​if​ tag == ​'suicide' ​: 

my_quotes =   
group_suicide_quotes 
        ​else​: 

my_quotes =   
group_non_suicide_quotes 
  
        ​for​ q ​in​ my_quotes: 
            rows_so_far -= ​1 
            ​if​ rows_so_far <= ​0​: 
                ​print​ ​'.' ​, 

rows_so_far = all_quotes /     
10 
  
            clang = ​'english' 
            qtext = my_quotes[q][ ​'q' ​] 
            row = [] 
  
            ​for​ attr ​in​ other_attributes: 
                call = ​getattr ​(op, attr) 

row.append( ​str ​(call(qtext,  
lang = clang))) 
  
            ​for​ attr ​in​ read_scores: 

call = ​getattr ​(textstat,    
attr) 
 
row.append( ​str ​(call(qtext))) 
  

​# Sentiment score is based in       
the english translation 
 
row.append( ​str ​(op.get_feature_sentiment_sc
ore(qtext, lang = clang))) 
  
            ​# Mispelling score 
 
row.append( ​str ​(op.get_feature_mispelling_s
core(qtext, lang = clang))) 
  
            ​if​ includeTFIDF: 

​# tf-idf based on stemmed      
data 
                ​# p = dense[i].tolist()[0] 

p =   
tfidf_matrix[i,:].toarray()[ ​0​] 

​for fi ​in    
range ​( ​len ​(feature_names)): 

row.append( ​' ​%.3f ​' %   
p[fi]) 
  
            row.append(tag) 
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f.write( ​',' ​.join(row).encode( ​'utf8' ​)) 
            f.write( ​" ​\n​" ​) 
  
            i += ​1 
  
    f.close() 
    ​print​ ​'..Done' 
 
def​ ​compute_ig​(quotes_per_tag): 
    ​""" 
    compute_ig(): 

Compute information gain for each      
word 
    """ 
    ​# With a little bit of help 

​#  
http://streamhacker.com/tag/information-ga
in/ 
  

​from ​nltk.metrics ​import    
BigramAssocMeasures 
  
    word_count_per_class = {} 
    all_word_count_per_class = {} 
    word_count_per_word = {} 
    all_words = ​0 
  
    ​print​ ​"Loading files for ig.." ​, 
    ​for​ tclass ​in​ quotes_per_tag: 
        word_count_per_class[tclass] = {} 

all_word_count_per_class[tclass] =   
0 

i = ​len ​(quotes_per_tag[tclass]) /     
10 

​for quote ​in    
quotes_per_tag[tclass]: 
            i -= ​1 
            ​if​ i <= ​0​: 
                ​print​ ​'.' ​, 

i =   
len ​(quotes_per_tag[tclass]) / ​10 
  

data =   
quotes_per_tag[tclass][quote][ ​'q' ​].split( ​' 
' ​) 
  
            ​for​ w ​in​ data: 
                w = w.lower() 

w = re.sub( ​r'([^a-z])' ​,    
'' ​, w) 
  
                ​if​ w == ​'' ​: 
                    ​continue 
  
 
word_count_per_class[tclass][w] =  
word_count_per_class[tclass].get(w, ​0​) + ​1 
 

all_word_count_per_class[tclass] += ​1 
word_count_per_word[w] =   

word_count_per_word.get(w, ​0​) + ​1 
                all_words += ​1 
  
            ​del​ data 
  
    ​print​ ​"Evaluating.." ​, 
    i = ​int ​( ​len ​(word_count_per_word) / ​10​)  
    score_per_word = {} 
    ​for​ w ​in​ word_count_per_word: 
        i -= ​1 
        ​if​ i <= ​0​: 
            ​print​ ​',' ​, 

i =   
int ​( ​len ​(word_count_per_word) / ​10​) 
  
        freq = word_count_per_word[w] 
        score_per_word[w] = ​0 
  
        ​for​ c ​in​ word_count_per_class: 

score_per_word[w] +=   
BigramAssocMeasures.chi_sq(word_count_per_
class[c].get(w, ​0​), (freq,   
all_word_count_per_class[c]), all_words) 
  

​del word_count_per_class,   
all_word_count_per_class, 
word_count_per_word 
  
    ​print​ ​"Sorting.." ​, 
    s = sortedDictValues(score_per_word) 
    ​print​ ​"..Done" 
    ​# del score_per_word 
  
    ​print​ ​"..Done" 
 
    nums = [] 
    ​for​ w ​in​ s: 
        nums.append(score_per_word[w]) 
 
    ​print​ ​"Creating ig histogram" ​, 

plt.figure(figsize = ( ​24​, ​int ​( ​24.0 *      
9.0​ / ​16.0​)),) 

​#  
plt.hist(numpy.asarray(score_per_word.valu
es()), 5000, facecolor = 'g') 
    plt.plot(nums) 
    plt.xlabel( ​'Lexicon values' ​) 
    plt.ylabel( ​'IG Score' ​) 

plt.title( ​'IG Score per lexicon     
lemma' ​) 
    plt.grid( ​True ​) 
    plt.show() 
    ​print​ ​"..Done" 
    ​# del s 
  
    ​return​ s, score_per_word 
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