
FRAILSAFE – H2020-PHC–690140 ​D4.12

Project Title: Sensing and predictive treatment of frailty and
associated co-morbidities using advanced personalized
models and advanced interventions

Contract No: 690140
Instrument: Collaborative Project
Call identifier: H2020-PHC-2014-2015
Topic: PHC-21-2015: Advancing active and healthy ageing with

ICT: Early risk detection and intervention
Start of project: 1 January 2016
Duration: 36 months

Deliverable No: D4.12
 LingTester Test Results – Passive

(off-line) mode (vers a)

Due date of deliverable: M18 (30​th​ June 2017)
Actual submission date: 30​th​ June 2017
Version: 1.1
Date​: 30​th​ June, 2017

Lead Author(s): C. Tsimpouris, N. Fazakis, K. Sgarbas (UoP)
Lead partners​: UoP

- 1 -

Ref. Ares(2017)3273573 - 29/06/2017

FRAILSAFE – H2020-PHC–690140 ​D4.12

CHANGE HISTORY

Ver

. Date Status Author (Beneficiary) Description

0.1 01/05/2017 draft

C. Tsimpouris (UoP),

N. Fazakis (UoP),

K. Sgarbas (UoP)

Initial draft

0.2 07/06/2017 draft

C. Tsimpouris (UoP),

N. Fazakis (UoP),

K. Sgarbas (UoP)

First draft deliverable report,
sent for internal review

0.3 22/06/2017 draft

C. Tsimpouris (UoP),

N. Fazakis (UoP),

K. Sgarbas (UoP)

Second draft deliverable report,
Text updates on introduction &
chapters 2,4,5,6

0.4 23/06/2017 draft

L. Bianconi (SIGLA),

M. Toma (SIGLA)

K. Petridis (HYPERTECH)

Revision of the document

1.0 29/06/2017 final

C. Tsimpouris (UoP),

N. Fazakis (UoP),

K. Sgarbas (UoP)

Final version circulated to
partners

1.1 30/06/2017 final

C. Tsimpouris (UoP),

N. Fazakis (UoP),

K. Sgarbas (UoP)

Minor corrections,
accompanying files included

- 2 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

EXECUTIVE SUMMARY

The LingTester Test Results (passive - offline mode) deliverable is the second deliverable of
the Task 4.5 Processing social media which is part of the Work Package 4. In this deliverable
the focus shifts from technical aspects of the LingTester tool, which prototype was presented
in D4.10, to a more scientific approach regarding the test evaluation and results of the tool.
This is achieved by concentrating on the essential tasks of the classification process. All the
involving tasks, even if some of them seem to be trivial, in reality are equally important. The
tasks are related to methodologies of collected data analysis, feature selection, classification
and evaluation.

In a more general view, LingTester is the FrailSafe language analysis tool that aims to
process the user’s typed text and detect abnormal behaviour. At this point, the deliverable is
in a preliminary version, but still it is able to perform classification according to levels of
frailty.

The main objective of this Work Package is to handle the collection, management and
analysis of frailty older people data streamed through their social, behavioural and cognitive
activities. Both offline and online methods will be developed. Moreover, the above methods
will be applied in order to manage and analyze new data and also generate the FrailSafe
patient models.

Reader is strongly advised to read deliverable 4.10 in order to fully understand this report, as
it is a follow up on how the prediction model has been updated.

- 3 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

DOCUMENT INFORMATION

Contract Number: H2020-PHC–690140 Acronym: FRAILSAFE

Full title Sensing and predictive treatment of frailty and associated co-morbidities
using advanced personalized models and advanced interventions

Project URL http://frailsafe-project.eu/
EU Project officer Mr. Jan Komarek

Deliverable number: 4.12 Title: LingTester Test Results – Passive (off-line) mode
(vers a)

Work package number: 4 Title: Data Management and Analytics

Date of delivery Contractual 30/06/2017 (M18) Actual 30/6/2017

Status Draft □ Final ⌧

Nature Report □ Demonstrator ⌧ Other □

Dissemination
Level

Public ⌧ Consortium □

Abstract (for
dissemination)

This deliverable reports on the choices made in the design of the
prediction model of the LingTester tool and its regarding Test results. The
main topics discussed are feature extraction/selection techniques,
classification methods and Evaluation metrics. Firstly is given an overall
introduction to the classification concepts and features selected; secondly
a detailed test & evaluation of the results. Also, suicidal model tendency is
discussed and analysed.

Keywords frailty, frailty classification, natural language processing, suicidal tendency

Contributing
authors

(beneficiaries)

Tsimpouris Charalampos(UoP)
Fazakis Nikos (UoP)
Sgarbas Kyriakos (UoP)
Megalooikonomou Vasileios (UoP)

Responsible
author(s)

Sgarbas Kyriakos Email sgarbas@upatras.gr

Beneficiary UoP Phone +30 2610 996470

- 4 -

http://frailsafe-project.eu/
http://frailsafe-project.eu/

FRAILSAFE – H2020-PHC–690140 ​D4.12

TABLE OF CONTENTS

CHANGE HISTORY 2
EXECUTIVE SUMMARY 3
DOCUMENT INFORMATION 3
TABLE OF CONTENTS 5
LIST OF FIGURES 7
LIST OF TABLES 7
LIST OF ANNEXES 7

1. Introduction 8

2. Frailty 8
2.1 General frailty description 8
2.2 Collected data 8

3. Feature Extraction 9
3.1 Primitive features 9
3.2 Derived Features 16

3.2.1 Misspellings 16
3.2.2 Term Frequencies 16
3.2.3 Sentiment analysis 17
3.2.3 Readability score 17

4. Prediction Model 21
4.1 Introduction 21
4.2 Machine Learning 21

4.2.1 History 21
4.2.2 The process 21

4.3 WEKA Software Package 22
4.2.2 Description & features 22
4.2.2 The Explorer package 22

4.4 Feature extraction 23
4.5 Feature selection 25
4.5 Classification 28

5. Suicidal Tendencies Detection 30
5.1 Introduction 30
5.2 State of the art 31
5.3 Database construction 31
5.4 Feature extraction 31
5.5 Information gain and Feature selection 32
5.6 Suicide tendency prediction 33

6. Test Results 35
6.1 Introduction 35

- 5 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

6.2 Evaluation 35
6.4 Final model parameters 38
6.5 Final model results 39

6.5.1 Three class classification results 39
6.5.2 A simplification: Binary classification approach 40

6.6 Discussion of the results 41
6.7 Next steps 42

7. Ethics and Safety 43

8. References 45

9. File structure 47

10. Annexes 48
10.1 Goodreads crawler 48

- 6 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

LIST OF FIGURES
Figure 1: Steps of initial analysis 11
Figure 2: Distribution of answers 12
Figure 3: Distribution of answers 12
Figure 4: Distribution of answers for the question “How often... 14
Figure 5: Distribution of participants’ sex against frailty tag 15
Figure 6: Distribution of social media user type against participants’ sex 15
Figure 7: Distribution of information gain per available token 17
Figure 8: Process for the construction of a prediction model 21
Figure 9: WEKA explorer package 23
Figure 10: Selected attributes 28
Figure 11: Example process of top-down induction of decision trees 30
Figure 12: Distribution of information gain per available feature for the... 33
Figure 13: Suicide tendency prediction accuracy per classifier 34
Figure 14: detailed statistical measures of Rotation Forest performing model 34
Figure 15: Accuracy distribution 37
Figure 16: Frailty prediction results per prediction model 38
Figure 17: Decision tree model results 39
Figure 18: Decision tree visualization 40
Figure 19: Results of the final prediction model 41

LIST OF TABLES

Table 1: Distribution of question “How often do you connect... 14
Table 2: List of features 23
Table 3: List of features 30
Table 4: Suicide tendency prediction accuracy per classifier 31
Table 5: Frailty prediction results per prediction model 34
Table 6: Explanation of parameters used 38
Table 7: Actual parameters used for the prediction model 39

LIST OF ANNEXES

10.1 Goodreads crawler 47

- 7 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

1. INTRODUCTION
As this is a preliminary report, the main focus of this deliverable is to finalize the first well
performing predictive model taking in account the new populated participants data. The
evaluation of the model is also an important aspect of the report, for this reason a satisfactory
number of algorithms has been tested and compared. The evaluation of the test results is
also presented and discussed on this text.

The report is organized in six main chapters (excluding the auxiliary sections). The first main
chapters attempts to briefly describe frailty and the collected project data related to the task.
The next chapter studies the feature extraction techniques and methodologies used on
LingTester tool. Following feature extraction, the next chapter focuses on the predictive
model creation process. On chapter five, an introduction is given for the subject of suicidal
tendencies detection and the methodologies followed to build the relevant model. Test and
evaluation results are the subject of the next chapter which is numbered as section six.
Finally, a discussion on the ethics and safety, related to the task, is made.

2. FRAILTY

2.1 General frailty description

Frailty is a common clinical syndrome in older adults that carries an increased risk for poor
health outcomes including falls, incident disability, hospitalization, and mortality [7, 8]. Frailty
is theoretically defined as a clinically recognizable state of increased vulnerability resulting
from aging-associated decline in reserve and function across multiple physiologic systems
such that the ability to cope with everyday or acute stressors is comprised. In the absence of
a gold standard, frailty has been operationally defined by Fried et al. as meeting three out of
five phenotypic criteria indicating compromised energetics: low grip strength, low energy,
slowed walking speed, low physical activity, and/or unintentional weight loss [9]. A pre-frail
stage, in which one or two criteria are present, identifies a subset at high risk of progressing
to frailty. Various adaptations of Fried’s clinical phenotype have emerged in the literature,
which were often motivated by available measures in specific studies rather than meaningful
conceptual differences.

2.2 Collected data

Utilising eCRF API, we were able to retrieve all available raw data, stored by each medical
team, containing detailed answers to the questionnaire, along with uploaded files of present
and past text. For the purposes of our research, we retrieved only submissions with at least
one file uploaded, and proceed to verify the uploaded content. Results were the following:

● Greece (UoP): 126 participants
○ 90 participants from the Start group

- 8 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

○ 36 participants from the Main group
● Cyprus (Materia): 96 participants

○ 55 participants from the Start group
○ 41 participants from the Main group

● France (INSERM): 121 participants
○ 75 participants from the Start group
○ 44 participants from the Main group

For the aforementioned submissions, however, and after manual validation, we imported to
our internal database (for details please read D4.10, chapter 4) only the ones that text was
digitally available, discarding during this phase all images or PDF files containing scanned
images. As a result, submissions imported for the next phase were the following:

● Greece (UoP): 103
● Cyprus (Materia): 52 patients

3. FEATURE EXTRACTION

The feature extraction task is an essential pre-classification task. The FrailSafe project
collects a wide range of participants’ data, these data to be utilized by the candidate model
must first be appropriately processed. Turning raw data into objects that patterns can be
derived from is the process of creating features. A feature is simply an individual measurable
property of a phenomenon being observed. Depending on the data source there are
potentially dozens of different features that can be created from a single block of data.

The feature extraction task starts from an initial set of measured data and builds derived
values (features) intended to be informative and nonredundant, facilitating the subsequent
learning and generalization steps, and in some cases leading to better human interpretations.
Feature extraction involves reducing the amount of resources required to describe a large set
of data. When performing analysis of complex data one of the major problems stems from
the number of variables involved. Analysis with a large number of variables generally
requires a large amount of memory and computation power, also it may cause a
classification algorithm to overfit to training samples and generalize poorly to new samples.
Feature extraction is a general term for methods of constructing combinations of the
variables to get around these problems while still describing the data with sufficient accuracy.

3.1 Primitive features

Apart from existing features as stated in D4.10 chapter 5.1, extra ones were extracted
programmatically for all patients with digital text from eCRF:

1. Year of birth

- 9 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

2. Profession
3. Habitation zone
4. How many people do you follow on Twitter?
5. How many followers you have on twitter?
6. Family status
7. How many friends do you have on Facebook?
8. Do you consider yourself a familiar user of social media?
9. Do you use Facebook?
10. How often do you connect to the internet per week?
11. Have you changed your security settings in social media in order to protect your

personal data?

We decided to retrieve only patient attributes that could be available directly or indirectly in
the future through social media networks or other means to identify users’ electronic footprint.
For some of the aforementioned attributes accessed through the questionnaire, we went
through a primary analysis of the structured data using the statistical tool SPSS , a software 1

package used for logical batched and non-batched statistical analysis. Not all attributes were
selected, as it is shown also in the following paragraphs, due to the fact that missing values
were our primary obstacle to extract valuable outcomes.

Our first priority was to conduct an appropriate analysis which depends on the gathered data
and the intended goal. Our steps:

1 https://www.ibm.com/analytics/us/en/technology/spss/

- 10 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

Figure 1: Steps of initial analysis

Q: How often do you connect to internet per week

Descriptive Statistics

 N Minimum Maximum Mean Std. Deviation
How often do you connect
to internet per week

31 1 7 5.06 2.394

Valid N (listwise) 31

31 people answered (N=31). Minimum access to the internet is 1 per week while maximum is
7 per week. The average is Mean=5.06 and the spread out of the data is Std=2.394. While
this is something answered by the patient, in theory it could be derived through API by each
social media network.

- 11 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

Figure 2: Distribution of answers

Q: How many contacts do you have on facebook

7 people answered (N=7). Minimum number of contacts is 20 while maximum is 9999. The
average is Mean=244.14 and the spread out of the data is Std=361.58 .

Descriptive Statistics

 N Minimum Maximum Mean Std. Deviation
How many contacts do you
have on facebook

7 20 999 244.14 361.585

Valid N (listwise) 7

- 12 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

 Figure 3: Distribution of answers

Q: Does the number of internet connection depends on how healthy they feel (nonfrail,
prefrail, frail). The answer at first is that there is no correlation. Though, the results are not
dependable due to many missing values.

Case Processing Summary

Tag

Cases
Valid Missing Total

N Percent N Percent N Percent
How often do you connect to
internet per week

frail 2 3.4% 56 96.6% 58 100.0%

missing 2 8.3% 22 91.7% 24 100.0%

nonfrail 18 40.9% 26 59.1% 44 100.0%

prefrail 9 12.3% 64 87.7% 73 100.0%

Descriptives

Tag Statistic
Std.
Error

How often do you
connect to internet per
week

frail Mean 4.50 2.500
Median 4.50
Std. Deviation 3.536
Minimum 2
Maximum 7
Range 5

missing Mean 5.00 2.000
Median 5.00
Std. Deviation 2.828
Minimum 3
Maximum 7
Range 4

nonfrail Mean 5.11 .577
Median 7.00
Std. Deviation 2.447
Minimum 1
Maximum 7
Range 6

prefrail Mean 5.11 .824
Median 6.00
Std. Deviation 2.472
Minimum 1

- 13 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

Maximum 7
Range 6

Table 1: Distribution of question “How often do you connect to internet per week”
against frailty tag

Figure 4: Distribution of answers for the question “How often do you connect to
internet per week” per frailty tag

Q: Women and men have similarities concerning nonfrail and prefrail situations but female
tend to be more frail at 23.6% than men 9.8%.

- 14 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

Figure 5: Distribution of participants’ sex against frailty tag

- 15 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

 Figure 6: Distribution of social media user type against participants’ sex

Due to missing values, as stated in the beginning of this chapter, we were unable to extract
more results from these questions.

3.2 Derived Features

3.2.1 Misspellings
This feature is derived based on the percentage of misspellings found within a text, divided
by all words. In order to achieve high accuracy, a known dictionary is used per language. The
same dictionary is used by thousands of people that utilise LibreOffice , an open office suite 2

of applications. LibreOffice is community-driven and developed software, and is a project of
the not-for-profit organization, The Document Foundation. LibreOffice is free and open
source software, originally based on OpenOffice.org (commonly known as OpenOffice), and
is the most actively developed OpenOffice.org successor project.

3.2.2 Term Frequencies
Proceeding to more NLP specific techniques the term frequency–inverse document
frequency (tf-idf) is used. Tf-idf is a numerical statistic that is intended to reflect how
important a word is to a document in a corpus. It is used as a weighting factor in text mining.
The tf-idf value increases proportionally to the number of times a word appears in the
document, but is offset by the frequency of the word in the corpus, which helps to adjust for
the fact that some words appear more frequently in general (Salton et al, 1983). However, it
became apparent that the use of the full list of the tf-idf features, which has decreased due to
the stemming process, produces substantial error to the prediction model, and thus was
removed.

In order to overcome this issue, information gain (IG), also known as Mutual Information, has
been used to extract only the terms (or small phrases) that indeed can help the prediction
model improve in the overall accuracy. In general terms, the expected information gain is the
change in information entropy ​H from a prior state to a state that takes some information as
given:

Information gain for classification is a measure of how common a feature is in a particular
class compared to how common it is in all other classes. A word that occurs primarily in
non-frail patients and rarely in frail ones is high information. That makes sense because the
point is to use only the most informative features and ignore the rest.

One of the best metrics for information gain is chi square [1, 3]. NLTK package, already used
for other preprocessing tasks in more than one work packages, includes this in the
BigramAssocMeasures class in the metrics package. To use it, first we need to calculate a
few frequencies for each word: its overall frequency and its frequency within each class. This

2 https://www.libreoffice.org/

- 16 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

is done with a ​FreqDist class for overall frequency of words, and a ​ConditionalFreqDist class
where the conditions are the class labels. Once we have those numbers, we can score words
with the ​BigramAssocMeasures.chi_sq function, then sort the words by score and take the
top X. We then put these words into a set, and use a set membership test in our feature
selection function to select only those words that appear in the set. Now each text from a
patient is classified based on the presence of these high information words. This process,
has been constructed within the ​compute_ig ​python function, available also for other
tasks. An example, of this task is shown below. It can be seen, that information gain is
different per feature (word n our case), and thus is more than apparent that taking a small
specific percent of this feature set, minimises the noise included by the rest of the words.

Figure 7: Distribution of information gain per available token

3.2.3 Sentiment analysis
Sentiment analysis is based on a overall rating sentiment of the patient’s text, trying to detect
the polarity of the text. This feature is extracted using a dictionary and a basic algorithm
which calculates the polarity of the text based on the sum of all polarities of words within the
same text. The dictionary used can be found within the ​pattern python module and is
available for the English language. Due to missing sentiment vocabulary for other languages,
text is automatically translated in English for this step.

3.2.3 Readability score
We decided that readability score may improve our prediction model, and we proceed to
implement a series of various models that calculate readability, and see which one makes

- 17 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

the difference. All methods measure textual difficulty, which indicates how easy a text is to
read. The following readability scores have been implemented.

Flesch Reading Ease
The Flesch Reading Ease Scale measures readability as follows:

● 100: Very easy to read. Average sentence length is 12 words or fewer. No words of
more than two syllables.

● 65: Plain English. Average sentence is 15 to 20 words long. Average word has two
syllables.

● 30: A little hard to read. Sentences will have mostly 25 words. Two syllables usually.
● 0: Very hard to read. Average sentence is 37 words long. Average word has more

than two syllables.

The higher the rating, the easier the text is to understand. By the very nature of technical
subject matter, the Flesch score is usually relatively low for technical documentation. If the
Flesch test is used regularly, one may develop a sense of what a reasonable score is for the
type of documentation one is working on and aim to align with this score. The approach to
calculating the Flesch score is as follows:

1. Calculate the average sentence length, L.
2. Calculate the average number of syllables per word, N.
3. Calculate score (between 0-100%).

SMOG Index
The SMOG grade (Simple Measure of Gobbledygook) is a measure of readability that
estimates the years of education needed to understand a piece of writing. The formula for
calculating the SMOG grade was developed by G. Harry McLaughlin as a more accurate and
more easily calculated substitute for the Gunning fog index and published in 1969. To make
calculating a text's readability as simple as possible an approximate formula was also given
— count the words of three or more syllables in three 10-sentence samples, estimate the
count's square root (from the nearest perfect square), and add 3.

To calculate SMOG:

1. Count a number of sentences (at least 30)
2. In those sentences, count the polysyllables (words of 3 or more syllables).
3. Calculate using

After numerous tests, this feature seem not affect the prediction model, as it was made
apparent that Greek language is not fully supported by the underlying NLTK functions.

Flesch–Kincaid Grade Level
Although this method uses the same core measures (word length and sentence length) like
the Flesch Reading Ease, they have different weighting factors. The results of the two tests

- 18 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

correlate approximately inversely: a text with a comparatively high score on the Reading
Ease test should have a lower score on the Grade-Level test. These readability tests are
used extensively in the field of education. The "Flesch–Kincaid Grade Level Formula" instead
presents a score as a U.S. grade level, making it easier for teachers, parents, librarians, and
others to judge the readability level of various books and texts. It can also mean the number
of years of education generally required to understand this text, relevant when the formula
results in a number greater than 10. The grade level is calculated with the following formula:

Coleman–Liau index
The Coleman–Liau index is a readability test designed by Meri Coleman and T. L. Liau to
gauge the understandability of a text. Like the Flesch–Kincaid Grade Level, Gunning fog
index, SMOG index, and Automated Readability Index, its output approximates the U.S.
grade level thought necessary to comprehend the text.

The Coleman–Liau index was designed to be easily calculated mechanically from samples of
hard-copy text. Unlike syllable-based readability indices, it does not require that the character
content of words be analyzed, only their length in characters. Therefore, it could be used in
conjunction with theoretically simple mechanical scanners that would only need to recognize
character, word, and sentence boundaries, removing the need for full optical character
recognition or manual keypunching. The Coleman–Liau index is calculated with the following
formula:

L is the average number of letters per 100 words and S is the average number of sentences
per 100 words.

Automated readability index
The formula for calculating the automated readability index is given below:

where characters is the number of letters and numbers, words is the number of spaces, and
sentences is the number of sentences, which were counted manually by the typist when the
above formula was developed. Non-integer scores are always rounded up to the nearest
whole number, so a score of 10.1 or 10.6 would be converted to 11.

Dale–Chall readability formula

- 19 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

The Dale–Chall readability formula is a readability test that provides a numeric gauge of the
comprehension difficulty that readers come upon when reading a text. It uses a list of 3000
words that groups of fourth-grade American students could reliably understand, considering
any word not on that list to be difficult. The formula for calculating the raw score of the
Dale–Chall readability score is given below:

Linsear Write
Linsear Write is a readability metric for English text, purportedly developed for the United
States Air Force to help them calculate the readability of their technical manuals.It was
specifically designed to calculate the United States grade level of a text sample based on
sentence length and the number of words used that have three or more syllables. The
algorithm to calculate Linsear Write score includes various steps of preprocessing and
statistical analysis of the text.

Gunning fog index
The Gunning fog index is calculated with the following algorithm:

1. Determine the average sentence length. (Divide the number of words by the number
of sentences.)

2. Count the "complex" words: those with three or more syllables. Do not include proper
nouns, familiar jargon, or compound words. Do not include common suffixes (such as
-es, -ed, or -ing) as a syllable

3. Add the average sentence length and the percentage of complex words; and
4. Multiply the result by 0.4.

The complete formula is:

Discussion about readability scores
All aforementioned scores are heavily used in English by teachers, writers and technicians to
identify the difficulty of a text, manual and try to simplify it. Within the current work package,
however, we tried to use them towards a different direction and identify how frailty is
connected to the readability of the expressed text, provided by a patient. This is a hypothesis
that hasn’t been discarded yet and needs to be thoroughly tested the following months, after
improving the aforementioned readability scores to support better the Greek language.

- 20 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

4. PREDICTION MODEL

4.1 Introduction

In this section of the report, will be presented a brief introduction of the major artificial
intelligence techniques and methodologies that are used to produce predictive models.
These methodologies can be found in the literature grouped under the term machine
learning[10].

4.2 Machine Learning

4.2.1 History
The field inherits its methodologies from mathematics and statistics. The first real form of
machine learning is discovered around 1950s with the very well known ‘’Turing Test’’[11],
some of the most basic algorithms like ‘’Nearest neighbours’’, ‘’Back propagation’’ and
‘’Support vector machines’’ are getting discovered from 1970s through 1990s. Near this time
the machine learning approach shifts from knowledge-driven to a more data-driven approach.
After 2000s, technological advancements in computer chips give the ability to machine
learning algorithms to utilize parallel processing and big data. Neural networks can now be
run in a big number of cpu cores and this new methodology advances to become the ‘’Deep
learning’’[12] approach. In the following years machine learning models are widely adopted in
software programs, giving great solutions to problems in almost any real world sector.

4.2.2 The process
The construction of a prediction model involves a number of tasks, basically the figure below
summarizes the whole process.

- 21 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

 Figure 8: Process for the construction of a prediction model

The first phase to the construction of a model is the raw data collection. FrailSafe project
involves several number of teams under the umbrellas of different work packages in order to
collect and parse all the related project data including clinical trials, hardware sensors data
and higher level (analyzed) data. All the collected is potential input to the LingTester
predictive model thus it has to be analyzed by the tasks of Feature extraction and Feature
Selection which will be presented separately in the following sections. The next step of the
process is the classification task, in this task a big number of available classification
algorithms is applied and tested in order to finalize the candidate model giving the best
predictive abilities. The finalized model is afterwards ready to be applied on real world
instances.

4.3 WEKA Software Package

4.2.2 Description & features

WEKA[13] Software is one of the most known packages used researchers and developers, it
provides implementations of learning algorithms that you be easily applied to any dataset. It
also includes a variety of tools for transforming datasets, such as the algorithms for
discretization and sampling. A standard use casio scenario includes the preprocess of a
dataset, the feed into a learning scheme, and the analysis of the resulting classifier and its
performance. It was worth noting that every use flow the user wants to implement can be
achieved by simply utilizing the GUI tools that accompany weka or in more complex
scenarios, the user can access or alter directly the implemented source code through its own
applications. Summarizing the most important features of the software:

● It is Freely available under the GNU General Public License.
● It is Portable, since it is fully implemented in the Java programming language and

thus runs on almost any modern computing platform.
● It includes a comprehensive collection of data preprocessing and modeling

techniques.
● It is Easy to use or alter due to its graphical user interfaces and extensible libraries.

4.2.2 The Explorer package

The explorer package is weka’s main graphical user interface, it gives access to all its
facilities using menu selection and form filling. It is illustrated in ​figure 9​. To begin, there are
six different panels, selected by the tabs at the top, corresponding to the various data mining
tasks that weka supports. Further panels can become available by installing appropriate
packages.

- 22 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

Figure 9: WEKA explorer package

All the classification task analysis done in this and the related reports was conducted using
mainly using the explorer package. The tab ​Preprocess ​was used to alter accordingly the
training dataset. For the evaluation of the available attributes the selection tab was used. The
learner algorithms that were tested, were found on the Classify tab where the evaluation
results are also found.

4.4 Feature extraction

For the essential task of feature extraction, a python algorithm was developed. This script is
highly complex and employs all the techniques that have already been discussed in
deliverable 4.10. For better understanding and presentation, available features can be
categorized by the extraction method that was used for their creation. The table below
attempts to summarize this information.

Feature Names Type - Extraction Method

● transcript
○ yes
○ no

● language

Primitive
Rules & filters on eCRF API data

- 23 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

○ greek
○ greek-cypriot
○ french

● class
○ nonfrail
○ prefrail
○ frail

● sex
○ male
○ female

● do_you_consider_yourself_a_familiar

_user_of_social_media
○ beginner
○ less-familiar
○ very-familiar

● family_status
○ married-or-in-a-relationship
○ single
○ divorced,
○ widow

● habitation_zone
○ urban
○ semi-urban
○ rural

● have_you_changed_your_security_se
ttings_in_social_media_in_order_to_p
rotect_your_personal_data

○ yes
○ no

● year_of_birth
● con_per_week ​connections per week
● twitter_follows ​number if people user is

following on Twitter
● twitter_followers ​number of followers on

Twitter
● fb_friends ​number of friends on FB

● text_length
● number_of_sentences
● number_of_words
● number_of_words_per_sentence
● text_entropy

Derived
Statistical Measures

● desc_image_ENG_sentiment
● desc_event_ENG_sentiment
● prev_text_ENG_sentiment

Derived
Sentiment Analysis

● desc_image_misspelled
● desc_event_misspelled
● prev_text_misspelled

Derived
Percent of misspelled words based on
known vocabulary

- 24 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

● tf-0
● tf-1
● ...

Derived
Term frequency – Inverse document
frequency, after feature selection based on
information gain

● flesch_reading_ease
● smog_index
● flesch_kincaid_grade
● coleman_liau_index
● automated_readability_index
● dale_chall_readability_score
● difficult_words
● linsear_write_formula
● gunning_fog

Derived
Readability score

Table 2: List of features

4.5 Feature selection

Feature selection along with feature extraction are, as stated today in the majority of
literature, the most essential tasks for creating a well performing predictive model. The
prediction accuracy of a trained learner is directly depended on how much informative the
selected model features are.

The feature selection process, also known as variable selection, attribute selection or
variable subset selection, is the process of selecting a subset of relevant features (variables,
predictors) for use in model construction. The central premise when using a feature selection
technique is that the data contains many features that are either redundant or irrelevant, and
can thus be removed without incurring much loss of information [14]. Redundant or irrelevant
features are two distinct notions, since one relevant feature may be redundant in the
presence of another relevant feature with which it is strongly correlated. A number of
techniques have been proposed in the literature using algorithms and even classifiers for
automating the process of feature selection. The most common algorithms are the
exhaustive, best first [15], simulated annealing [16] and the genetic algorithm [17]. In
practice, the task of feature selection is a highly empirical process where algorithms and
human intelligence are combined in order to find the optimal subset of features, thus
constructing the final feature set that will be used in the classification task.

As a first phase of the feature selection process we attempt to `Rank’ the available extracted
features. This is achieved through the use of the weka algorithm called `OneR Attribute
Evaluator’. The algorithm utilizes the `One R’ [18] machine learning classifier. In general, the
classifier attempts to find the best feature available on the feature space, the exact algorithm
follows next.

- 25 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

One R Classifier

Input:
Load the complete set of features (C)
Count the number of all features (N)

Loop for N

For each feature-class pair (P),
 For each value of that P, make a rule:
 Count how often each value of target (class) appears
 Find the most frequent class
 Make the rule assign that class to this value of the P
 Calculate the total error of the rules of each P

Output:
Choose the P with the smallest total error.

The Evaluator algorithm uses a small variation of the classifier taking in account other
evaluation metrics than the total error, like ReliefF, GainRatio, Entropy e.t.c., though the use
of a Ranker package. The Attribute Evaluator algorithm was run and the results obtained are
summarized in the next table.

Attribute selection output:

=== Attribute Selection on all input data ===

Search Method:

Attribute ranking.

Attribute Evaluator (supervised, Class (nominal): 54 class):

OneR feature evaluator.

Using training data for evaluation of attributes.
Minimum bucket size for OneR: 6

Ranked attributes:

58.427 14 year_of_birth
53.371 32 desc_event_misspelled
52.809 1 transcript
52.247 9 text_length
52.247 23 automated_readability_index
51.685 11 number_of_words
51.124 10 number_of_sentences
50.562 13 text_entropy
50 19 flesch_reading_ease
50 21 flesch_kincaid_grade
50 12 number_of_words_per_sentence
50 31 desc_image_misspelled
49.438 27 gunning_fog
48.876 24 dale_chall_readability_score
48.876 29 desc_event_ENG_sentiment
48.315 22 coleman_liau_index
47.191 33 prev_text_misspelled
47.191 15 con_per_week
46.629 26 linsear_write_formula
46.629 7 habitation_zone

- 26 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

45.506 5 sex
45.506 8 have_you_changed_your_security_settings_in_social_media_in_order_to_
 protect_your_personal_data
44.944 28 desc_image_ENG_sentiment
44.944 53 tf-19
44.944 46 tf-12
44.944 3 do_you_consider_yourself_a_familiar_user_of_social_media
44.382 18 fb_friends
44.382 36 tf-2
43.82 45 tf-11
43.82 51 tf-17
43.82 40 tf-6
43.82 34 tf-0
43.82 37 tf-3
43.258 50 tf-16
43.258 6 family_status
43.258 35 tf-1
43.258 4 language
43.258 42 tf-8
43.258 52 tf-18
42.697 25 difficult_words
42.697 39 tf-5
42.697 16 twitter_follows
42.697 41 tf-7
42.697 30 prev_text_ENG_sentiment
42.697 17 twitter_followers
42.697 43 tf-9
42.135 38 tf-4
42.135 2 source
42.135 49 tf-15
42.135 44 tf-10
42.135 48 tf-14
42.135 47 tf-13
42.135 20 smog_index

Selected attributes:
14,32,1,9,23,11,10,13,19,21,12,31,27,24,29,22,33,15,26,7,5,8,28,53,46,3,18,36,45,51,40,34,37,50,6,35,4,42,52,
25,39,16,41,30,17,43,38,2,49,44,48,47,20 : 53

To further enhance the feature selection task, a simple yet effective process has been
followed. The first steps of the process involve an iteration of classifications where each
individual feature was examined for its contribution to the accuracy of the temporary model,
using the cross validation method [19]. After a sufficient number of iterations, the resulting
decision tree was visualized and examined by hand in order to further optimize the resulting
model.

 Final Feature Selection Algorithm

Input:
Load the complete set of features (C)

Count the number of all features (N)
Classify with C and store the accuracy (A)
Initialize pointer as zero (P)
Loop for N

Remove C[P]
Classify with C (Ac)
If Ac < A

- 27 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

 Restore C[P]

Validate​ features by tree visualization

Output:
Subset of features (S)

After the successful execution of the two algorithms by combining the strongest results of the
algorithms we ended up with the following selected attributes to use for the final classification
task.

Figure 10: Selected attributes

4.5 Classification

This section is an attempt to describe briefly the classifier models that will be used to obtain
the test results in chapter 6. It will also help to understand why a classifier is better suitable
than another classifier for the given problem of frailty classification.

The first big category of classifiers worth mentioning is the probabilistic or bayes classifiers.
The classifiers aparting this category are based on the application of Bayes’ theorem with
strong (naive) independence assumptions between the features. Naive Bayes[20], the most
known classifier belonging in this category, has been studied extensively since the 1950s. It
was introduced under a different name into the text retrieval community in the early 1960s
and remains a popular method for text categorization, the problem of judging documents as
belonging to one category or the other (such as spam or legitimate, sports or politics, etc.)
with word frequencies as the features. With appropriate pre-processing, it is competitive in
this domain with more advanced methods including support vector machines. It also finds
application in automatic medical diagnosis. Abstractly, naive Bayes is a conditional

- 28 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

probability model: given a problem instance to be classified, represented by a vector ​x
representing some `n’ features (independent variables), it assigns to this instance
probabilities calculated by the formula:

for each of k possible outcomes or classes C​k​.

A second big category of classifiers is based on functions. The classifier family that is worth
mentioning in this category, as it suits the problem, is Support Vector Machines[21]. SVMs
are supervised learning models with associated learning algorithms that analyze data used
for classification and regression analysis. Given a set of training examples, each marked as
belonging to one or the other of two categories, an SVM training algorithm builds a model
that assigns new examples to one category or the other, making it a non-probabilistic binary
linear classifier. An SVM model is a representation of the examples as points in space,
mapped so that the examples of the separate categories are divided by a clear gap that is as
wide as possible. New examples are then mapped into that same space and predicted to
belong to a category based on on which side of the gap they fall. In addition to performing
linear classification, SVMs can efficiently perform a non-linear classification using what is
called the kernel trick, implicitly mapping their inputs into high-dimensional feature spaces. In
this category of classifiers the Multilayer perceptron is also considered a strong model. MLP
is a feedforward artificial neural network model that maps sets of input data onto a set of
appropriate outputs. An MLP consists of multiple layers of nodes in a directed graph, with
each layer fully connected to the next one. Except for the input nodes, each node is a neuron
(a processing element) with a nonlinear activation function. MLP utilizes a learning technique
called backpropagation for training the network.

The third category that will be mentioned is based on tree structures. Better known as
Decision Trees[22], this set of classifiers mainly utilize a decision tree as a predictive model
to go from observations about an item, represented in the nodes, to conclusions about the
item's target value represented in the leaves. A tree can be trained by splitting the source set
into subsets based on an attribute value test. This process is repeated on each derived
subset in a recursive manner called recursive partitioning. The recursion is completed when
the subset at a node has all the same value of the target variable, or when splitting no longer
adds value to the predictions. This process of top-down induction of decision trees is an
example of a greedy algorithm, and it is by far the most common strategy for learning
decision trees from data. An example trained tree follows in the next figure, representing the
classic loan applicant acceptance decision tree.

- 29 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

Figure 11: Example process of top-down induction of decision trees

A number of other categories exists based on specific logical rules, e.g.
K-Nearest-Neighbours[23], KStar[24] and Locally weighted learning (LWL), or based on more
complex combinations of the primitive models e.g. RotationForest[25], LogitBoost and
utilization of techniques like bagging, voting and stacking. The number of supervised
classifiers available nowadays has increased a lot, despite this section has shown the most
common models, it does not intend to fully map the subject, instead it gives a brief
understanding of the models deployed on the next chapters.

5. SUICIDAL TENDENCIES DETECTION

5.1 Introduction

The study of suicide risk is complex. Suicide is a medical disaster, but occurs at a relatively
low frequency. The extensive body of suicide and self harm risk research has identified many
risk factors, among them: diagnosed mental disorders, substance abuse, and a history of
prior suicide attempts. However, much of this research has been based on retrospective
study of suicide attempters and completers. The rarity of suicidal behavior limits the
specificity of predicting future suicidal behavior based on relatively common risk factors. A
recent survey of literature on screening tools to predict suicide attempts and death by suicide
concluded that current evidence is insufficient to support reliance on screening tools based
on presence or absence of risk factors in clinical practice [2], and so, the current standard of
care for the at-risk patient remains in the domain of a skilled clinical assessment.

- 30 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

5.2 State of the art

Fine-grained automatic emotion detection can benefit from from classifier optimization and a
combined lexico-semantic feature representation can achieve scores up to 68.86% F-score
[4]. Corpus for model construction and prediction has been a note corpus of positive only
data, annotated with fine-grained emotions, released in the framework of the 2011 i2b2 NLP
Challenge on emotion classification in suicide notes [5], allowing research on which emotions
might be indicative of suicidal behavior, and how they can be found automatically. However,
this dataset is no longer available. Also, vocabulary based methodology, manually annotated
on Twitter posts and then classification using various classifier could not produce more than
64% accuracy [6].

5.3 Database construction

According to the predefined work packages, no information could be available to identify
suicidal patients, so a different approach was selected to create our dataset. We identified
the Goodreads web page as a potential source for our scope. Among other things, this web 3

page provides famous quotes from known books, which have been manually saved by the
Goodreads community. This manual process also forces each user to tag the quote with at
least one keyword, and therefore various categories have appeared. A crawler for this
purpose was constructed to identify and download all quotes set by the researchers, split in
two main groups:

● suicide: quotes identified by the following keywords
○ suicide,
○ suicide-note,
○ suicide-attempt and
○ suicidal-thoughts

● non-suicide: quotes identified by the following keywords
○ humor and
○ happy

To avoid an unbalanced dataset, the second category was filled randomly till we had the
same amount of quotes in both categories. After the data collection, each group has 3184
instances.

5.4 Feature extraction

Feature extraction was based on the same methodology as stated before, for the frailty
prediction model. The derived feature space used for suicidal tendencies detection was
intentionally kept familiar with the frailty feature space for consistency reasons. In contrast
with the frailty detection process, the current task lacks the eCRF API data. Below, follows a
brief description of the feature space in ​table 3​.

3 https://www.goodreads.com/

- 31 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

Feature Names Feature Description

● class
○ suicide
○ non-suicide

goodreads crawler labels
(see Annex 1 for details)

● text_length
● number_of_sentences
● number_of_words
● number_of_words_per_sentence
● text_entropy

Statistical Measures

● sentiment Sentiment Analysis of text data

● misspelled Percent of misspelled words based on
known vocabulary

● tf-0
● tf-1
● ...

Term frequency – Inverse document
frequency, after feature selection based on
information gain

● flesch_reading_ease
● smog_index
● flesch_kincaid_grade
● coleman_liau_index
● automated_readability_index
● dale_chall_readability_score
● difficult_words
● linsear_write_formula
● gunning_fog

Readability score

Table 3: List of features

5.5 Information gain and Feature selection

Also, feature selection and information gain was implemented to lower the dimensionality of
features, while also removing excessive noise from the Tf-IDF feature extraction.

- 32 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

Figure 12: Distribution of information gain per available feature for the suicidal prediction
model, based on Goodreads manually saved quotes.

5.6 Suicide tendency prediction

In order to detect suicidal signs in written text, a series of tests on classification models had
to be run. This section, has to be mentioned, that is a work in progress and will be finalized in
the final report.

The classifiers deployed where the very common in text classification `Naive Bayes’, the
classic `Decision Trees’ implementation (J48) and the more complex trees model known as
`Rotation Forest’. The tests ran on the extracted feature space mentioned in ​section 5.4
using 10 - cross validation on the training dataset constructed as explained in the previous
sections.

The results of the experiment are presented in detail below. The following table summarizes
the accuracies of the models along with the figure, giving a better visual comparison. Next,
the detailed statistical measures of best performing model are shown.

Classifier Accuracy %

NaiveBayes 68.35

J48 69.26

RotationForest 71.04

Table 4: Suicide tendency prediction accuracy per classifier

- 33 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

Figure 13: Suicide tendency prediction accuracy per classifier

=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances 4526 71.0407 %
Incorrectly Classified Instances 1845 28.9593 %
Kappa statistic 0.4208
Mean absolute error 0.3698
Root mean squared error 0.4306
Relative absolute error 73.9596 %
Root relative squared error 86.1218 %
Total Number of Instances 6371

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure ROC Area Class
 0.61 0.19 0.763 0.61 0.678 0.784 suicide
 0.81 0.39 0.675 0.81 0.737 0.784 non-suicide
Weighted Avg. 0.71 0.29 0.719 0.71 0.707 0.784

=== Confusion Matrix ===

 a b <-- classified as
 1944 1241 | a = suicide
 604 2582 | b = non-suicide

Figure 14: detailed statistical measures of Rotation Forest performing model

The Rotation Forest model seems to be superior according to the accuracy comparison of
the models. Thus, the relating subject is very sensitive and important, decision to alert the
involved people can not be made only by judging the accuracy metric. As this is a preliminary
report, more work will be done in this direction to ensure the most appropriate metrics are
used to give a more clear picture of the situation. Some of them involve, the Distribution of
probabilities for the classified instance, false positives, false negatives and generally
precision and recall analysis.

- 34 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

6. TEST RESULTS

6.1 Introduction

The major subject of this report is the test results of the predictive model. In reality,
everything done in the task is heavily tied with the performance increasement of the final
model. As has been emphasized in ​chapter 4​, the performance of a model is equally
influenced by all the previous tasks of the classification process. The parts of feature
extraction and feature selection are considered as highly important factors of the final
predictive accuracy and require fairly more expensive resources like human expertise. As the
above factors are not a hundred percent controlled by this task, a very strong and extensive
testing process has to be done in order to select the final classification model and ensure the
best possible prediction accuracy.

This chapter presents the evaluation process followed to obtain the test results, the
comparison of the various models, the parameters of the selected model and the statistics of
the final model. Finally, this chapter ends with a brief discussion of the test results, as this is
a preliminary report and the model is expected to change, and also a few words about the
future steps of development.

6.2 Evaluation

Machine learning offers a wide range of algorithms that can fit the data and build a predictive
model. In order to test the possible model performances and select the most suitable for the
case, an extensive experiment was organized. Totally, seventeen of the most widely used
classifiers were selected from six different algorithm families. The measured metric was that
of classification accuracy.

The evaluation method that was used is the classic method of Cross Validation[26]. In
general, cross validation is a model validation technique for assessing how the results of a
statistical analysis will generalize to an independent data set. One round of cross-validation
involves partitioning a sample of data into complementary subsets, performing the analysis
on one subset (called the training set), and validating the analysis on the other subset (called
the validation set or testing set). To reduce variability, multiple rounds of cross-validation are
performed using different partitions, and the validation results are averaged over the rounds.
One of the main reasons for using cross-validation instead of using the conventional
validation (e.g. partitioning the data set into two sets of 70% for training and 30% for test) is
that there is not enough data available to partition it into separate training and test sets
without losing significant modelling or testing capability. In summary, cross-validation

- 35 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

combines (averages) measures of fit (prediction error) to derive a more accurate estimate of
model prediction performance.

The table that follows presents the test results, measured in accuracy percent, for the
extensive tested scenario, using the 10 fold cross validation method.

Classifier Accuracy %

NaiveBayes 54.49

SVM 52.24

Logistic Regression 60.67

MultilayerPerceptron 59.55

SMO 57.86

IBk 56.17

KStar 52.80

LWL 57.86

RotationForest 58.98

OneR 52.24

ZeroR 42.13

DecisionStump 51.12

J48 64.04

LMT 60.11

RandomForest 56.74

RandomTree 51.12

REPTree 47.19

Table 5: Frailty prediction results per prediction model

Most of the tested models seem to be performing moderately with an average accuracy of
55.01% with a standard deviation of 5.44%. The outcome was very logical as frailty
prediction is a very difficult and sensitive problem and is highly correlated to the constructed
dataset.

The exception that one can immediately spot on the table is the J48 model which is the
implementation of the classic Decision Trees classifier. This phenomenally simple algorithm
achieved to perform almost 10% above the average accuracy scoring a 64.04%. Below are

- 36 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

presented the figures of accuracy distribution and the accuracy visualization for better
understanding of the results.

Figure 15: Accuracy distribution

- 37 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

Figure 16: Frailty prediction results per prediction model

6.4 Final model parameters

The final classifier that was selected to be used in the LingTester tool is the very well known
Decision Tree algorithm implementation C4.5, first proposed by Ross Quinlan as an
extension of the ID3 algorithm. In the tool, an open source java version of this algorithm has
been used called J48. This version is capable of being tuned by a series of input parameters,
mainly giving control of the final structure of the produced tree (nodes, leaves, height). The
available parameters have been gathered along with their description in the next table.

Parameter Name Description

Binary splits Whether to use binary splits on nominal attributes when building the
trees.

Confidence factor The confidence factor used for pruning (smaller values incur more
pruning).

MinNumObj The minimum number of instances per leaf.

Reduced Error
Pruning

Whether reduced-error pruning is used instead of C.4.5 pruning.

- 38 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

Unpruned Whether pruning is performed.

Use Laplace Whether counts at leaves are smoothed based on Laplace.

Table 6: Explanation of parameters used

The exact values that were used to produce the LingTester tool predictive tree are presented
on the table below. The process of model parameter optimization is a highly empirical
process, although there have been some efforts in the field, for example Auto-Weka. As this
is still a preliminary version, the empirical approach of trial and error was used to select the
best performing parameter values. A small performance gain may still be possible by utilizing
automated parameter exploration techniques and is thus left for future examination.

Parameter Name Parameter Value

Binary splits False

Confidence factor 0.25

MinNumObj 2

Reduced Error Pruning False

Unpruned True

Use Laplace False

Table 7: Actual parameters used for the prediction model

6.5 Final model results

6.5.1 Three class classification results

The final Decision Tree model that is embedded to the LingTester tool is capable of
predicting the three possible frailty conditions (nonfrail, prefrail, frail) by an average prediction
accuracy of 64.04% for out of sample instances. A statistical analysis of the model has been
conducted and the most important metrics are presented below.

=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances 114 64.0449 %
Incorrectly Classified Instances 64 35.9551 %
Kappa statistic 0.4465
Mean absolute error 0.3041
Root mean squared error 0.4257
Relative absolute error 69.881 %
Root relative squared error 91.2654 %
Total Number of Instances 178
Ignored Class Unknown Instances 2

=== Detailed Accuracy By Class ===

- 39 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

 TP Rate FP Rate Precision Recall F-Measure ROC Area Class
 0.689 0.083 0.738 0.689 0.713 0.779 nonfrail
 0.64 0.291 0.615 0.64 0.627 0.719 prefrail
 0.603 0.192 0.603 0.603 0.603 0.735 frail
Weighted Avg. 0.64 0.206 0.643 0.64 0.641 0.739

=== Confusion Matrix ===

 a b c <-- classified as
 31 10 4 | a = nonfrail
 8 48 19 | b = prefrail
 3 20 35 | c = frail

Figure 17: Decision tree model results

At the end of the results above, the confusion matrix for the corresponding model is also
shown. From the confusion matrix one can extract useful evaluation metrics like false
positives, negatives and generally calculate indicators known as precision & recall. Further
study of these metrics is left for future study on the final version of the report.

The final extracted tree structure of the trained model is also presented in the next figure.

Figure 18: Decision tree visualization

6.5.2 A simplification: Binary classification approach

As the main model involves the three frailty classes, was expected to have a higher decision
complexity and proportionally lower accuracy. Apart from further future dataset population
and attempt was made to decrease the decision complexity of the frailty prediction problem.
A common technique employed is the reduction of the number of classes by combining or
removing similar classes. In this section and clearly for testing and evaluation purposes, a

- 40 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

similar strategy was employed for the dataset. In more detail, the Prefrail class was
combined with that of Frail class, thus the instances that were labeled as prefrail were
renamed as frail and the training and evaluation process was again deployed. The results
were stunning, the prediction accuracy was significantly increased to 84.83%. The difference
was almost 20% more than the three class classification problem. The results were expected
as the decision complexity regarding the frailty status of a participant in evaluation was
significantly lower. Below are shown the exact statistical results and the corresponding
confusion matrix.

=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances 151 84.8315 %
Incorrectly Classified Instances 27 15.1685 %
Kappa statistic 0.57
Mean absolute error 0.2242
Root mean squared error 0.3701
Relative absolute error 59.0842 %
Root relative squared error 85.1245 %
Total Number of Instances 178
Ignored Class Unknown Instances 2

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure ROC Area Class
 0.6 0.068 0.75 0.6 0.667 0.758 nonfrail
 0.932 0.4 0.873 0.932 0.902 0.745 frail
Weighted Avg. 0.848 0.316 0.842 0.848 0.842 0.749

=== Confusion Matrix ===

 a b <-- classified as
 27 18 | a = nonfrail
 9 124 | b = frail

Figure 19: Results of the final prediction model

It is worth to mention that even when the experiment was reconducted and the class
reduction was now done by simply removing the instances labeled as prefrail, the prediction
accuracy still remained at the same levels (~81.55%).

6.6 Discussion of the results

This chapter was devoted to the evaluation process and the extraction of the according
evaluation metrics. A large experiment was organized and the seventeen of the most known
models were trained and evaluated.

The final model that was selected to be embedded to the LingTester tool, was a Decision
Tree implementation (C4.5) due its accuracy superiority, in comparison with the other
evaluated algorithms, but also due its simplicity and its fundamental property of tree
structure. The last property is considered highly important for a medical application such
frailty prediction. This is because the exact decision logic can be easily visualized giving the
human evaluator(doctors-researchers) to observe and judge its behavior and even extract
useful feature relations between the instance feature values.

- 41 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

The accuracy for the selected classifier was achieved after the parameter optimization
process and was around 64% for three class classification problem. Further increase of the
prediction performance is possible to be achieved either by the future population of
participants data or by further investigation of the model parameters and the deployment of
ensemble models.

Binary classification is also an approach that was evaluated and seems tο perform relatively
good mainly to the reduction of decision complexity. Further exploration of the approach may
reveal useful relations between the dataset features and parameters.

6.7 Next steps

On weeks that follow, it has been decided to keep working on the following issues, with in
mind to improve accuracy of the prediction model, and also make it more rigid.

Language per text, currently, is not verified but assumed to be greek, greek-cypriot or french
through the extraction process. For example, it is taken for granted that patients from UoP
partner speak and write in Greek while patients from INSERM (France) speak and write in
French. We focus on an automatic detection system, which can successfully identify given
text among a predefined set of languages. This step, while may impose significant errors, will
make the model prediction model more rigid for cases where we are unable to identify given
text, or in case language should not be taken for granted, for example a greek patient may
say something in English while posting on Facebook.

Another step to improve the accuracy of the prediction model, will be firstly to improve the
methodology of feature extraction, which among other steps, contains the calculation of the
readability score. Throughout the testing phase, we identified a series of steps that can
improve readability scores. In specific, we can improve the syllabification rules of the Greek
language implemented within the NLTK module, that is widely used for our feature extraction
step.

Furthermore, results were not satisfactory using POS information, and thus were removed as
accuracy dropped when including these features. However, it should be stressed that extra
steps will be carried out to identify a way to circumvent these problems.

- 42 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

7. ETHICS AND SAFETY

Throughout the construction of the offline Lingtester tool, legal issues were kept in mind so
as to protect sensitive information.

First of all, as described before data anonymization is used, which confirms that the
participants of the clinical trials can not be linked to their own data. The database where the
collected data is stored, is always kept of offline, this fact ensures the impossibility of
unauthorised access of the data. Furthermore, the LingTester tool in order to make its
predictions uses an exported and pre-computed(at training phase) model thus securing the
independence of participants’ training data and the tool which can be deployed on less
secure environments.

Moreover, the data persistence and analysis will comply with the data protection guidelines
reported in deliverable "D9.9: Ethics, Safety and Health Barriers" (Section 6) with the aim of,
at same time, keeping the maximum level of security and privacy of the data and allowing the
successful performance of the other tasks of the project. Moreover, data will be obtained in
accordance to the local ethics requirements. Any information regarding the participants will
be treated as sensitive personal data (as defined in deliverable D9.9) and kept strictly private.
Future provided data will be thoroughly checked by semi-automatic algorithms in order to
anonymize any personal identifiers like full names, dates, emails, communication cellphone
or landline numbers – hence falling outside the scope of legislation concerning personal data.

Finally, the participants are already, fully informed and agree to share their clinical data with
the FrailSafe program. In any time during the program they retain the right to quit the data
collection process according to their will.

- 43 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

- 44 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

8. REFERENCES

[1] M. Pacharne and V. Nayak. "Feature Selection Using Various Hybrid Algorithms for
Speech Recognition," in Computational Intelligence and Information Technology, 1st ed., V.
Das and N. Thankachan, Ed. Berlin: Springer Berlin Heidelberg, 2011, pp. 652-656.

[2] Haney EM, Carson S, Low A, et al.: Suicide Risk Factors and Risk Assessment Tools: A
Systematic Review. U.S. Department of Veterans Affairs, Washington, D.C., 2012

[3] C. Jin, T. Ma and R. Hou, Chi-square statistics feature selection based on term frequency
and distribution for text categorization, IETE J. Res. 61 (4) (2015) 351–362.

[4] B. Desmet, V. Hoste, Emotion detection in suicide notes, Expert Systems with
Applications 40 (2013) 6351–6358

[5] Pestian J, Nasrallah H, Matykiewicz P, Bennett A, Leenaars A. Suicide Note Classification
Using Natural Language Processing: A Content Analysis. Biomedical Informatics Insights.
2010: 19-28. PMID 21643548

[6] A. Abboute, Y. Boudjeriou, G. Entringer, J. Azé, S. Bringay, P. Poncelet Mining twitter for
suicide prevention Proceedings of the Natural Language Processing and Information
Systems, Springer (2014), pp. 250–253

[7] Bandeen-Roche K, Xue QL, Ferrucci L, et al. Phenotype of frailty: Characterization in the
women’s health and aging studies. Journals of Gerontology Series A-Biological Sciences and
Medical Sciences. 2006;61(3):262–266.

[8] Ensrud KE, Ewing SK, Cawthon PM, et al. A comparison of frailty indexes for the
prediction of falls, disability, fractures, and mortality in older men. Journal of the American
Geriatrics Society. 2009 Mar;57(3):492–498.

[9] Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: evidence for a phenotype.
JGerontolA BiolSciMedSci. 2001;56(3):M146–M156.

[10] Michalski, Ryszard S., Jaime G. Carbonell, and Tom M. Mitchell, eds. Machine learning:
An artificial intelligence approach. Springer Science & Business Media, 2013.

[11] "The Turing Test, 1950". turing.org.uk. The Alan Turing Internet Scrapbook.

[12] N., Aizenberg, Naum; Joos., Vandewalle, (2000). Multi-Valued and Universal Binary
Neurons : Theory, Learning and Applications. Springer US. ISBN 9781475731156. OCLC
851783812

[13] Hall, Mark, et al. "The WEKA data mining software: an update." ACM SIGKDD
explorations newsletter 11.1 (2009): 10-18.

- 45 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

[14] Bermingham, Mairead L.; Pong-Wong, Ricardo; Spiliopoulou, Athina; Hayward, Caroline;

[15] Pearl, J. Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley, 1984.

[16] Khachaturyan, A.; Semenovskaya, S.; Vainshtein, B. (1979). "Statistical-Thermodynamic
Approach to Determination of Structure Amplitude Phases". Sov.Phys. Crystallography.

[17] Mitchell, Melanie (1996). An Introduction to Genetic Algorithms. Cambridge, MA: MIT
Press.

[18] R.C. Holte (1993). Very simple classification rules perform well on most commonly used
datasets. Machine Learning, Vol. 11, pp. 63-91.

[19] ​Geisser, Seymour (1993). Predictive Inference. New York, NY: Chapman and Hall.

[20] Russell, Stuart; Norvig, Peter (2003) [1995]. Artificial Intelligence: A Modern Approach
(2nd ed.). Prentice Hall. ISBN 978-0137903955.

[21] Cortes, C.; Vapnik, V. (1995). "Support-vector networks". Machine Learning. 20 (3):
273–297. doi:10.1007/BF00994018.

[22] Ross Quinlan (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers, San Mateo, CA.

[23] Sutton, Oliver. "Introduction to k nearest neighbour classification and condensed nearest
neighbour data reduction." University lectures, University of Leicester (2012).

[24] John G. Cleary, Leonard E. Trigg: K*: An Instance-based Learner Using an Entropic
Distance Measure. In: 12th International Conference on Machine Learning, 108-114, 1995.

[25] Juan J. Rodriguez, Ludmila I. Kuncheva, Carlos J. Alonso (2006). Rotation Forest: A
new classifier ensemble method. IEEE Transactions on Pattern Analysis and Machine
Intelligence. 28(10):1619-1630.

[26] Kohavi, Ron. "A study of cross-validation and bootstrap for accuracy estimation and
model selection." Ijcai. Vol. 14. No. 2. 1995.

- 46 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

9. FILE STRUCTURE

● Folder: Deliverable

○ File: fraildata_v11a_tfidf_ngram1_1.arff
■ Extracted dataset

○ File: fraildata_feature_selected.arff
■ Feature selected dataset

○ File: fraildata_feature_selected_binary.arff
■ Binary feature selected dataset

○ File: fraildata_feature_selected_binary_removed_instances.arff
■ Binary via instance removement feature selected dataset

○ File: suicide_v1c_withtfidf_30_ngram1.arff
■ Suicide constructed dataset

○ File: final_model.model
■ Built frailty predictive model

○ File: suicide_model.model
■ Built suicide predictive model

○ File: offline-parser.py
■ Python script for feature extraction - creation & dataset creation

○ File: goodreads-downloader.py
■ Python crawler script for the suicidal dataset

- 47 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

10. ANNEXES

10.1 Goodreads crawler
File: goodreads-downloader.py

-*- coding: utf-8 -*-
"""
@author: Charalampos
"""

import​ ​math​, ​numpy​, ​pickle​, ​nltk
import​ ​matplotlib.pyplot​ ​as​ ​plt

import​ ​urllib2
import​ ​pickle
import​ ​re
op = ​__import__ ​(​"offline-parser" ​)
from​ ​textstat.textstat​ ​import​ textstat

main_page =
'http://www.goodreads.com/quotes'
history_file =
'goodreads-downloader.history.pickle'
quotes_file =
'goodreads-downloader.quotes.csv'

default_suicide_groups = [​'suicide' ​,
'sadness' ​, ​'suicide-note' ​,
'suicide-attempt' ​, ​'suicidal-thoughts' ​]
default_non_suicide_groups = [​'humor' ​,
'happy' ​]

def ​sortedDictValues​(adict, reverse_order
= ​True ​):
 ​"""

Taksinomisi leksikou, simfwna me to
"value"

http://wiki.python.org/moin/HowTo/Sorting/
 """
 ret = []
 ​for​ k ​in​ adict:
 ret.append((k, adict[k]))

ret = ​sorted ​(ret, key= ​lambda tdf:
tdf[​1​], reverse = reverse_order)

 ​return​ [page[​0​] ​for​ page ​in​ ret]

def​ ​historySave​(history_to_save):
 f = ​open ​(history_file, ​'w' ​)
 pickle.dump(history_to_save, f)
 f.close()

def​ ​historyLoad​():
 history_to_load = {}
 ​try​:
 f = ​open ​(history_file, ​'r' ​)
 history_to_load = pickle.load(f)
 f.close()
 ​except​:
 ​pass

 ​return​ history_to_load

def​ ​quotesSave​(quotes_to_save):
 f = ​open ​(quotes_file, ​'w' ​)
 ​for​ k ​in​ quotes_to_save:

f.write(​" ​%s ​\t​%s ​\n​" %
(​'|' ​.join(quotes_to_save[k][​'t' ​]), k))
 f.close()

def​ ​quotesLoad​():
 quotes_to_load = {}
 ​try​:
 f = ​open ​(quotes_file, ​'r' ​)
 lines = f.readlines()
 f.close()
 ​for​ k ​in​ lines:
 k = k.strip()
 qtags, qtext = k.split(​" ​\t​" ​)
 qtags = qtags.strip()
 qtext = qtext.strip()
 ​if​ qtags == qtext:
 ​continue

quotes_to_load[qtext] = { ​'q' ​:
qtext, ​'t' ​: qtags.split(​'|' ​)}
 ​except​:
 ​pass

 ​return​ quotes_to_load

def​ ​quotesByTag​():
 ​print​ ​'Loading..' ​,
 quotes = quotesLoad()
 ​print​ ​'Done!'

 ​print​ ​'Transforming..' ​,
 quotes_to_return = {}
 res = ​len ​(quotes) / ​10
 ​for​ q ​in​ quotes:
 res -= ​1
 ​if​ res < ​0​:
 res = ​len ​(quotes) / ​10
 ​print​ ​'.' ​,

 quote = quotes[q]
 ​for​ t ​in​ quote[​'t' ​]:
 ​if​ ​not​ t ​in​ quotes_to_return:
 quotes_to_return[t] = {}

quotes_to_return[t][quote[​'q' ​]] = quote
 ​print​ ​'Done!'

 ​return​ quotes_to_return

def​ ​getQuotes​(tag, page, history):
 url_to_fetch = main_page
 ​if​ tag != ​'' ​:

- 48 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

 url_to_fetch += ​'/tag/' ​ + tag

 ​if​ page > ​1​:

url_to_fetch += ​'?page=' +
str ​(page)

 ​if​ tag == ​'' ​:

​print ​"Fetching all quotes, page
%d ​" ​ % page,
 ​else​:

​print ​"Fetching quotes for ​%s ​,
page ​%d ​" ​ % (tag, page),

 ​try​:

request =
urllib2.Request(url_to_fetch)

contents =
urllib2.urlopen(request).read()
 ​except​:
 ​print​ ​'..Error!'
 ​return​ ​None

contents = contents.replace(​'“' ​,
'' ​)

contents = contents.replace(​'”' ​,
'' ​)

contents = contents.replace(​'―' ​,
'' ​)
 contents = contents.replace(​" ​\n​" ​, ​'' ​)

 new_tags = ​0

​for m ​in
re.finditer(​'\/quotes\/tag\/([a-z\-]+)' ​,
contents):
 tag = m.group(​1​)
 ​if​ ​not​ tag ​in​ history:
 history[tag] = ​0
 new_tags += ​1

 ​if​ new_tags > ​0​:
 ​print​ ​'.. ​%d ​ new tags' ​ % new_tags,
 historySave(history)

contents = contents.replace(​'<div
class="quote mediumText ">' ​, ​"<div
class='quote'>" ​)

​# contents =
contents.replace('quoteText">',
"quoteText'>")

text_quotes = contents.split(​"<div
class='quote'>" ​)
 ​# Useless
 ​del​ text_quotes[​0​]

 quotes_to_return = {}
 ​for​ q ​in​ text_quotes:

m = re.search(​'quoteText">(.*?)<' ​,
q)

qtext =
m.group(​1​).strip().replace(​" ​\t​" ​, ​'' ​)
 ​if​ qtext == ​'' ​:
 ​continue

 ctags = []

​for m ​in
re.finditer(​'\/quotes\/tag\/([a-z\-]+)' ​,

q):
​if m.group(​1​).strip() == ​'' ​or

m.group(​1​).strip() == qtext:
 ​continue

 ctags.append(m.group(​1​))

 ​if​ ​len ​(ctags) <= ​0​:
 ​continue

quotes_to_return[qtext] = { ​'q' ​:
qtext, ​'t' ​: ctags}

​print ​' ​%d quotes' %
len ​(quotes_to_return),
 ​print​ ​'..Done!'

 ​return​ quotes_to_return
 ​# print quotes_to_return
 ​# print contents

def ​getTagsByGroup​(includeGroups,
excludeGroups = [], quotes_by_tag = ​None ​,
no_more_than = ​0​):
 ​if​ quotes_by_tag ​is​ ​None ​:
 quotes_by_tag = quotesByTag()

 excluded = {}
 ​for​ g ​in​ excludeGroups:
 ​for​ q ​in​ quotes_by_tag[g]:
 quote = quotes_by_tag[g][q]
 excluded[quote[​'q' ​]] = ​True

 selected = {}
 ​for​ g ​in​ includeGroups:
 ​for​ q ​in​ quotes_by_tag[g]:
 quote = quotes_by_tag[g][q]
 ​if​ quote[​'q' ​] ​in​ excluded:
 ​continue

 selected[quote[​'q' ​]] = quote

​if no_more_than > ​0 ​and
len ​(selected) >= no_more_than:
 ​break

 ​return​ selected

def ​getSeperateGroups​(suicideGroups,
nonSuicideGroups, quotes_by_tag = ​None ​):
 ​if​ quotes_by_tag ​is​ ​None ​:
 quotes_by_tag = quotesByTag()

group1 = getTagsByGroup(suicideGroups,
nonSuicideGroups, quotes_by_tag)

group2 =
getTagsByGroup(nonSuicideGroups,
suicideGroups, quotes_by_tag, ​len ​(group1))

​print ​"suicide group: ​%d ​" %
len ​(group1)

​print ​"NON suicide group: ​%d ​" %
len ​(group2)
 ​return​ group1, group2

def​ ​startWorking​():
 quotes = quotesLoad()
 history = historyLoad()

- 49 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

 ​if​ ​not​ ​'' ​ ​in​ history:
 history[​'' ​] = ​0
 historySave(history)

​# for tag in ['suicide', 'sadness',
'suffering', 'suicide-note',
'failed-attempt', 'suicide-attempt',
'suicidal-thoughts']:
 ​# if not tag in history:
 ​# history[tag] = 0

​print ​" ​%d tags in my history" %
len ​(history)

​print ​" ​%d quotes already" %
len ​(quotes)

 added = ​True
 ​while​ added:
 added = ​False
 ​for​ tag ​in​ history.keys():
 ​if​ history[tag] >= ​100​:
 ​continue

​print ​'Tag " ​%s ​", page ​%d ​' %
(tag, history[tag])
 lenbefore = ​len ​(quotes)
 ​while​ history[tag] < ​100​:
 history[tag] += ​1

new_quotes =
getQuotes(tag, history[tag], history)
 ​if​ ​len ​(new_quotes) <= ​0​:
 history[tag] = ​100

 quotes.update(new_quotes)

 lenafter = ​len ​(quotes)

 ​if​ lenafter > lenbefore:
 added = ​True

​print ​'Saving ​%d new
quotes' ​ % (lenafter - lenbefore),
 quotesSave(quotes)
 ​print​ ​'..Done'
 historySave(history)

 ​print​ ​"Update ended"

def ​create_arff​(relation = ​'suicide' ​,
includeTFIDF = ​True ​, group_suicide = ​None ​,
group_non_suicide = ​None ​, TFIDF_thres =
20​):

​"""Create arff for WEKA with all
features availiable
 """
 out = []
 out.append(​'@RELATION ​%s ​' ​ % relation)
 out.append(​'' ​)

 other_attributes = []

other_attributes.append(​'get_feature_lengt
h' ​)

other_attributes.append(​'get_feature_numbe
r_of_sentences' ​)

other_attributes.append(​'get_feature_word_

count' ​)

other_attributes.append(​'get_feature_words
_per_sentence' ​)

other_attributes.append(​'get_feature_text_
shannon_entropy' ​)

 ​for​ attr ​in​ other_attributes:
 call = ​getattr ​(op, attr)

out.append(​'@ATTRIBUTE ​%s ​%s ​' %
(call(​'' ​, ​'title' ​), call(​'' ​, ​'type' ​)))

 read_scores = []

read_scores.append(​'flesch_reading_ease' ​)
 read_scores.append(​'smog_index' ​)

read_scores.append(​'flesch_kincaid_grade' ​)

read_scores.append(​'coleman_liau_index' ​)

read_scores.append(​'automated_readability_
index' ​)

read_scores.append(​'dale_chall_readability
_score' ​)
 read_scores.append(​'difficult_words' ​)

read_scores.append(​'linsear_write_formula'
)
 read_scores.append(​'gunning_fog' ​)
 ​for​ attr ​in​ read_scores:

out.append(​'@ATTRIBUTE ​%s ​%s ​' %
(attr, ​'real' ​))

out.append(​'@ATTRIBUTE ​%s ​%s ​' %
(​'sentiment' ​, ​'real' ​))

out.append(​'@ATTRIBUTE ​%s ​%s ​' %
(​'misspelled' ​, ​'real' ​))

 ​if​ group_suicide ​is​ ​None ​:

group_suicide =
default_suicide_groups
 ​if​ group_non_suicide ​is​ ​None ​:

group_non_suicide =
default_non_suicide_groups

results =
getSeperateGroups(group_suicide,
group_non_suicide)
 group_suicide_quotes = results[​0​]
 group_non_suicide_quotes = results[​1​]

 filename = ​'ARFFS/ ​%s ​.arff' ​ % relation

 texts = []
 ​if​ includeTFIDF:

s, score_words =
compute_ig({ ​'suicide' ​:
group_suicide_quotes, ​'non-suicide' ​:
group_non_suicide_quotes})

 mywords = s[:TFIDF_thres]

 ​for​ q ​in​ group_suicide_quotes:

temptext =

- 50 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

group_suicide_quotes[q][​'q' ​]
 temptext_out = []

​for word ​in temptext.split(​'
' ​):
 word = word.lower()

word = re.sub(​r'([^a-z
])' ​, ​'' ​, word)

​if word != ​'' ​and word ​in
mywords:

temptext_out.append(word)

texts.append(​'
' ​.join(temptext_out))

 ​for​ q ​in​ group_non_suicide_quotes:

temptext =
group_non_suicide_quotes[q][​'q' ​]
 temptext_out = []

​for word ​in temptext.split(​'
' ​):
 word = word.lower()

word = re.sub(​r'([^a-z
])' ​, ​'' ​, word)

​if word != ​'' ​and word ​in
mywords:

temptext_out.append(word)

texts.append(​'
' ​.join(temptext_out))

 ​# TF-IDF on stemmed text

tf =
op.TfidfVectorizer(analyzer= ​'word' ​,
ngram_range=(​1​, ​1​), min_df = ​0​)

tfidf_matrix =
tf.fit_transform(texts)

feature_names =
tf.get_feature_names()

​print ​"TF-IDF ​%d features" %
len ​(feature_names)

fp = ​open ​(filename + ​'.tf.pickle' ​,
'w' ​)

pickle.dump({ ​'tf' ​: tf,
'tfidf_matrix' ​: tfidf_matrix,
'feature_names' ​: feature_names, ​'s' ​: s,
'score_words' ​: score_words, ​'mywords' ​:
mywords}, fp)
 fp.close()

​for i ​in
range ​(​len ​(feature_names)):

out.append(​'@ATTRIBUTE tf- ​%d
real ​%% ​ ​%s ​' ​ % (i, feature_names[i]))

​# The following creates an "array
to big" error
 ​# dense = tfidf_matrix.todense()

 ​# Class always must go last

out.append(​'@ATTRIBUTE ​%s { ​%s ​}' %
(​'class' ​, ​',' ​.join([​'suicide' ​,
'non-suicide' ​])))

 out.append(​'' ​)

 out.append(​'@DATA' ​)
 out.append(​'' ​)

 ​print​ ​'Creating ARFF rows' ​,
 f = ​open ​(filename, ​'w' ​)
 f.write(​" ​\n​" ​.join(out).encode(​'utf8' ​))
 f.write(​" ​\n​" ​)

all_quotes = ​len ​(group_suicide_quotes)
+ ​len ​(group_non_suicide)
 rows_so_far = all_quotes / ​10
 i = ​0
 ​for​ tag ​in​ [​'suicide' ​, ​'non-suicide' ​]:
 ​if​ tag == ​'suicide' ​:

my_quotes =
group_suicide_quotes
 ​else​:

my_quotes =
group_non_suicide_quotes

 ​for​ q ​in​ my_quotes:
 rows_so_far -= ​1
 ​if​ rows_so_far <= ​0​:
 ​print​ ​'.' ​,

rows_so_far = all_quotes /
10

 clang = ​'english'
 qtext = my_quotes[q][​'q' ​]
 row = []

 ​for​ attr ​in​ other_attributes:
 call = ​getattr ​(op, attr)

row.append(​str ​(call(qtext,
lang = clang)))

 ​for​ attr ​in​ read_scores:

call = ​getattr ​(textstat,
attr)

row.append(​str ​(call(qtext)))

​# Sentiment score is based in
the english translation

row.append(​str ​(op.get_feature_sentiment_sc
ore(qtext, lang = clang)))

 ​# Mispelling score

row.append(​str ​(op.get_feature_mispelling_s
core(qtext, lang = clang)))

 ​if​ includeTFIDF:

​# tf-idf based on stemmed
data
 ​# p = dense[i].tolist()[0]

p =
tfidf_matrix[i,:].toarray()[​0​]

​for fi ​in
range ​(​len ​(feature_names)):

row.append(​' ​%.3f ​' %
p[fi])

 row.append(tag)

- 51 -

FRAILSAFE – H2020-PHC–690140 ​D4.12

f.write(​',' ​.join(row).encode(​'utf8' ​))
 f.write(​" ​\n​" ​)

 i += ​1

 f.close()
 ​print​ ​'..Done'

def​ ​compute_ig​(quotes_per_tag):
 ​"""
 compute_ig():

Compute information gain for each
word
 """
 ​# With a little bit of help

​#
http://streamhacker.com/tag/information-ga
in/

​from ​nltk.metrics ​import
BigramAssocMeasures

 word_count_per_class = {}
 all_word_count_per_class = {}
 word_count_per_word = {}
 all_words = ​0

 ​print​ ​"Loading files for ig.." ​,
 ​for​ tclass ​in​ quotes_per_tag:
 word_count_per_class[tclass] = {}

all_word_count_per_class[tclass] =
0

i = ​len ​(quotes_per_tag[tclass]) /
10

​for quote ​in
quotes_per_tag[tclass]:
 i -= ​1
 ​if​ i <= ​0​:
 ​print​ ​'.' ​,

i =
len ​(quotes_per_tag[tclass]) / ​10

data =
quotes_per_tag[tclass][quote][​'q' ​].split(​'
' ​)

 ​for​ w ​in​ data:
 w = w.lower()

w = re.sub(​r'([^a-z])' ​,
'' ​, w)

 ​if​ w == ​'' ​:
 ​continue

word_count_per_class[tclass][w] =
word_count_per_class[tclass].get(w, ​0​) + ​1

all_word_count_per_class[tclass] += ​1
word_count_per_word[w] =

word_count_per_word.get(w, ​0​) + ​1
 all_words += ​1

 ​del​ data

 ​print​ ​"Evaluating.." ​,
 i = ​int ​(​len ​(word_count_per_word) / ​10​)
 score_per_word = {}
 ​for​ w ​in​ word_count_per_word:
 i -= ​1
 ​if​ i <= ​0​:
 ​print​ ​',' ​,

i =
int ​(​len ​(word_count_per_word) / ​10​)

 freq = word_count_per_word[w]
 score_per_word[w] = ​0

 ​for​ c ​in​ word_count_per_class:

score_per_word[w] +=
BigramAssocMeasures.chi_sq(word_count_per_
class[c].get(w, ​0​), (freq,
all_word_count_per_class[c]), all_words)

​del word_count_per_class,
all_word_count_per_class,
word_count_per_word

 ​print​ ​"Sorting.." ​,
 s = sortedDictValues(score_per_word)
 ​print​ ​"..Done"
 ​# del score_per_word

 ​print​ ​"..Done"

 nums = []
 ​for​ w ​in​ s:
 nums.append(score_per_word[w])

 ​print​ ​"Creating ig histogram" ​,

plt.figure(figsize = (​24​, ​int ​(​24.0 *
9.0​ / ​16.0​)),)

​#
plt.hist(numpy.asarray(score_per_word.valu
es()), 5000, facecolor = 'g')
 plt.plot(nums)
 plt.xlabel(​'Lexicon values' ​)
 plt.ylabel(​'IG Score' ​)

plt.title(​'IG Score per lexicon
lemma' ​)
 plt.grid(​True ​)
 plt.show()
 ​print​ ​"..Done"
 ​# del s

 ​return​ s, score_per_word

- 52 -

